scholarly journals Predicting the Potential Geographic Distribution and Habitat Suitability of Two Economic Forest Trees on the Loess Plateau, China

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 747
Author(s):  
Wei Xu ◽  
Jingwei Jin ◽  
Jimin Cheng

The Loess Plateau is one of the most fragile ecosystems in the world. In order to increase the biodiversity in the area, develop sustainable agriculture and increase the income of the local people, we simulated the potential geographic distribution of two economic forest trees (Malus pumila Mill and Prunus armeniaca L.) in the present and future under two climate scenarios, using the maximum entropy model. In this study, the importance and contributions of environmental variables, areas of suitable habitats, changes in habitat suitability, the direction and distance of habitat range shifts, the change ratios for habitat area and land use proportions, were measured. According to our results, bioclimatic variables, topographic variables and soil variables play a significant role in defining the distribution of M. pumila and P. armeniaca. The min temperature of coldest month (bio6) was the most important environmental variable for the distribution of the two economic forest trees. The second most important factors for M. pumila and P. armeniaca were, respectively, the elevation and precipitation of the driest quarter (bio17). At the time of the study, the area of above moderately suitable habitats (AMSH) was 8.7967 × 104 km2 and 11.4631 × 104 km2 for M. pumila and P. armeniaca. The effect of Shared Socioeconomic Pathway (SSP) 5-85 was more dramatic than that of SSP1-26. Between now and the 2090s (SSP 5-85), the AMSH area of M. pumila is expected to decrease to 7.5957 × 104 km2, while that of P. armeniaca will increase to 34.6465 × 104 km2. The suitability of M. pumila decreased dramatically in the south and southeast regions of the Loess Plateau, increased in the middle and west and resulted in a shift in distance in the range of 78.61~190.63 km to the northwest, while P. armeniaca shifted to the northwest by 64.77~139.85 km. This study provides information for future policymaking regarding economic forest trees in the Loess Plateau.

2021 ◽  
Vol 15 (5) ◽  
pp. e0008212
Author(s):  
Emmanuel Echeverry-Cárdenas ◽  
Carolina López-Castañeda ◽  
Juan D. Carvajal-Castro ◽  
Oscar Alexander Aguirre-Obando

In Colombia, little is known on the distribution of the Asian mosquito Aedes albopictus, main vector of dengue, chikungunya, and Zika in Asia and Oceania. Therefore, this work sought to estimate its current and future potential geographic distribution under the Representative Concentration Paths (RCP) 2.6 and 8.5 emission scenarios by 2050 and 2070, using ecological niche models. For this, predictions were made in MaxEnt, employing occurrences of A. albopictus from their native area and South America and bioclimatic variables of these places. We found that, from their invasion of Colombia to the most recent years, A. albopictus is present in 47% of the country, in peri-urban (20%), rural (23%), and urban (57%) areas between 0 and 1800 m, with Antioquia and Valle del Cauca being the departments with most of the records. Our ecological niche modelling for the currently suggests that A. albopictus is distributed in 96% of the Colombian continental surface up to 3000 m (p < 0.001) putting at risk at least 48 million of people that could be infected by the arboviruses that this species transmits. Additionally, by 2050 and 2070, under RCP 2.6 scenario, its distribution could cover to nearly 90% of continental extension up to 3100 m (≈55 million of people at risk), while under RCP 8.5 scenario, it could decrease below 60% of continental extension, but expand upward to 3200 m (< 38 million of people at risk). These results suggest that, currently in Colombia, A. albopictus is found throughout the country and climate change could diminish eventually its area of distribution, but increase its altitudinal range. In Colombia, surveillance and vector control programs must focus their attention on this vector to avoid complications in the national public health setting.


2021 ◽  
Vol 45 (2) ◽  
pp. 241-250
Author(s):  
Ciprian Bîrsan ◽  
Constantin Mardari ◽  
Ovidiu Copoţ ◽  
Cătălin Tănase

Clathrus archeri is a saprophytic fungus native to the southern hemisphere which was introduced in Europe in the early twentieth century. Although it is naturalized in most regions of Central Europe, in Romania it is considered rather a rare species because it has been identified in only a few localities. Because of the rapid expansion of its range throughout Europe some authors assign this species an invasive potential. The objective of the paper was to identify both the potential distribution area and the potential suitable habitats for expansion in Romania and to highlight the environmental variables driving the probability of its occurrence. The maximum entropy model approach implemented in Maxent was used to model the species? potential distribution. The results highlighted altitude, snow cover length, the mean temperature of the driest quarter, and precipitation in the coldest quarter as the most important predictors of species? potential distribution in Romania. The map of the predicted distribution showed that the highest probability of occurrence for this species is in the mountainous and adjacent areas, while the map of habitat suitability confirmed that the best environmental conditions are in the Carpathians, while the most unfavourable are in the south-eastern regions of the country.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1263
Author(s):  
Yaoxing Wu ◽  
Yong Yang ◽  
Chen Liu ◽  
Yixuan Hou ◽  
Suzhi Yang ◽  
...  

Acer truncatum Bunge and Xanthoceras sorbifolium Bunge are small deciduous trees distributed in East Asia and have high ecological and nutrient value due to their strong environmental adaptability and seed oil abundant in nervonic acid and unsaturated fatty acids. However, their natural distribution remains unclear, which will also be affected by the changing climatic conditions. The main purpose of this study was to map and predict the current and future potential suitable habitats of these two species using MaxEnt based on the presence location of species and environmental variables. The results showed that A. truncatum was more suitable for warm and humid climates and was more durable to climate change compared to X. sorbifolium. Under the current environmental conditions, the suitable habitat of A. truncatum was mainly concentrated in Inner Mongolia Plateau, Loess Plateau, Sichuan Basin, Northeast Plain, North China Plain, Korean Peninsula, as well as Japan, with an area of 115.39 × 104 km2. X. sorbifolium was mainly distributed in Inner Mongolia Plateau and Loess Plateau with an area of 146.15 × 104 km2. Under future climate scenarios, the model predicted that higher concentrations of greenhouse gas emissions could result in greater expansion of the potential distribution of both species. Meanwhile, the study also revealed that the two species migrated to the north by east to varying degrees with the change in suitable habitats. This work could provide scientific basis for resource protection and utilization of the two economic forest trees.


2020 ◽  
Author(s):  
Emmanuel Echeverry-Cárdenas ◽  
Carolina López-Castañeda ◽  
Juan D. Carvajal-Castro ◽  
Oscar Alexander Aguirre-Obando

ABSTRACTIn Colombia, little is known on the distribution of the Asian mosquito Aedes albopictus, main vector of dengue, chikungunya, and Zika in Asia and Oceania. Therefore, this work set out to estimate its current and future potential geographic distribution under the Representative Concentration Paths (RCP) 2.6 and 8.5 emission scenarios by 2050 and 2070, using ecological niche models. For this, predictions were made in MaxEnt, employing occurrences of A. albopictus from their native area and South America and bioclimatic variables of these places. It was found that, since its invasion to Colombia, A. albopictus is present in 47% of the country, in peri-urban (20%), rural (23%), and urban (57%) areas between 0 and 1800 m, with Antioquia and Valle del Cauca being the departments with the most registries. The current estimation suggests that A. albopictus is distributed in 96% of the territory up to 3000 m (p < 0.001). Additionally, by 2050 and 2070, below RCP 2.6, its distribution could diminish to nearly 90% including altitudes of 3100 m, while below RCP 8.5 it would be < 60% increasing its distribution up to 3200 m. These results suggest that, currently in Colombia, A. albopictus is found throughout the country and climate change could diminish eventually its area of distribution, but increase its altitudinal range. In Colombia, surveillance and vector control programs must focus their attention on this vector to avoid complications in the national public health setting.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 823 ◽  
Author(s):  
Liu ◽  
Yang ◽  
Wei ◽  
Zhang ◽  
Zhang ◽  
...  

: Cistanche deserticola Ma, a perennial parasitic herb of family Orobanchaceae, is mainly parasitic on the roots of the Haloxylon ammodendron Bunge. In view of this special parasitic relationship, we applied random forest (RF) model to forecast potential geographic distribution, and developed a comprehensive habitat suitability model by integrating bioclimatic and soil factors to assess the suitable distribution of C. deserticola and H. ammodendron across China in 2050s and 2070s under RCP2.6, RCP4.5, and RCP8.5, respectively. We modeled the core potential geographic distribution of C. deserticola by overlaying the distribution of these two species, and analyzed the spatial distribution pattern and migration trend of C. deserticola by using the standard deviational ellipse. In addition, we evaluated the accuracy of RF model through three evaluation indexes, and analyzed the dominant climate factors. The results showed that the core potential distribution areas of C. deserticola are distributed in the Xinjiang Uygur Autonomous Region, the junction of Shaanxi–Gansu–Ningxia provinces, and the Inner Mongolia Autonomous Region. The spatial dispersion would intensify with the increasing of emission scenarios, and the geographical habitat is moving towards higher latitude. Among the three evaluation indexes, the area under the ROC curve (AUC) and True Skill Statistic (TSS) have better assessment results. The main bioclimatic factors affecting the distribution are min temperature of coldest month (Bio6), annual precipitation (Bio12), precipitation of wettest month (Bio13), precipitation of wettest quarter (Bio16), and precipitation of warmest quarter (Bio18), among which the importance of precipitation factors is greater than temperature factors. More importantly, the results of this study could provide some guidance for the improvement of desert forest system, the protection of endangered species and the further improvement of the ecological environment.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1057
Author(s):  
Delong Ma ◽  
Xinchang Lun ◽  
Chao Li ◽  
Ruobing Zhou ◽  
Zhe Zhao ◽  
...  

Amblyomma americanum (the lone star tick) is a pathogen vector, mainly from eastern North America, that bites humans. With global integration and climate change, some ticks that are currently confined to a certain place may begin to spread out; some reports have shown that they are undergoing rapid range expansion. The difference in the potential geographic distribution of A. americanum under current and future climatic conditions is dependent on environment variables such as temperature and precipitation, which can affect their survival. In this study, we used a maximum entropy (MaxEnt) model to predict the potential geographic distribution of A. americanum. The MaxEnt model was calibrated at the native range of A. americanum using occurrence data and the current climatic conditions. Seven WorldClim climatic variables were selected by the jackknife method and tested in MaxEnt using different combinations of model feature class functions and regularization multiplier values. The best model was chosen based on the omission rate and the lowest Akaike information criterion. The resulting model was then projected onto the global scale using the current and future climate conditions modeled under four greenhouse gas emission scenarios.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10965
Author(s):  
Dinka Zewudie ◽  
Wenguang Ding ◽  
Zhanlei Rong ◽  
Chuanyan Zhao ◽  
Yapeng Chang

Teff (Eragrostis tef (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia. Its growth is affected by climate change, so it is essential to understand climatic effects on its habitat suitability in order to design countermeasures to ensure food security. Based on the four Representative Concentration Pathway emission scenarios (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change (IPCC), we predicted the potential distribution of teff under current and future scenarios using a maximum entropy model (Maxent). Eleven variables were selected out of 19, according to correlation analysis combined with their contribution rates to the distribution. Simulated accuracy results validated by the area under the curve (AUC) had strong predictability with values of 0.83–0.85 for current and RCP scenarios. Our results demonstrated that mean temperature in the coldest season, precipitation seasonality, precipitation in the cold season and slope are the dominant factors driving potential teff distribution. Proportions of suitable teff area, relative to the total study area were 58% in current climate condition, 58.8% in RCP2.6, 57.6% in RCP4.5, 59.2% in RCP6.0, and 57.4% in RCP8.5, respectively. We found that warmer conditions are correlated with decreased land suitability. As expected, bioclimatic variables related to temperature and precipitation were the best predictors for teff suitability. Additionally, there were geographic shifts in land suitability, which need to be accounted for when assessing overall susceptibility to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural strategy and food security. A robust climate model is necessary for developing primary adaptive strategies and policy to minimize the harmful impact of climate change on teff.


Sign in / Sign up

Export Citation Format

Share Document