scholarly journals Potential geographic distribution of the tiger mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia

2021 ◽  
Vol 15 (5) ◽  
pp. e0008212
Author(s):  
Emmanuel Echeverry-Cárdenas ◽  
Carolina López-Castañeda ◽  
Juan D. Carvajal-Castro ◽  
Oscar Alexander Aguirre-Obando

In Colombia, little is known on the distribution of the Asian mosquito Aedes albopictus, main vector of dengue, chikungunya, and Zika in Asia and Oceania. Therefore, this work sought to estimate its current and future potential geographic distribution under the Representative Concentration Paths (RCP) 2.6 and 8.5 emission scenarios by 2050 and 2070, using ecological niche models. For this, predictions were made in MaxEnt, employing occurrences of A. albopictus from their native area and South America and bioclimatic variables of these places. We found that, from their invasion of Colombia to the most recent years, A. albopictus is present in 47% of the country, in peri-urban (20%), rural (23%), and urban (57%) areas between 0 and 1800 m, with Antioquia and Valle del Cauca being the departments with most of the records. Our ecological niche modelling for the currently suggests that A. albopictus is distributed in 96% of the Colombian continental surface up to 3000 m (p < 0.001) putting at risk at least 48 million of people that could be infected by the arboviruses that this species transmits. Additionally, by 2050 and 2070, under RCP 2.6 scenario, its distribution could cover to nearly 90% of continental extension up to 3100 m (≈55 million of people at risk), while under RCP 8.5 scenario, it could decrease below 60% of continental extension, but expand upward to 3200 m (< 38 million of people at risk). These results suggest that, currently in Colombia, A. albopictus is found throughout the country and climate change could diminish eventually its area of distribution, but increase its altitudinal range. In Colombia, surveillance and vector control programs must focus their attention on this vector to avoid complications in the national public health setting.

2020 ◽  
Author(s):  
Emmanuel Echeverry-Cárdenas ◽  
Carolina López-Castañeda ◽  
Juan D. Carvajal-Castro ◽  
Oscar Alexander Aguirre-Obando

ABSTRACTIn Colombia, little is known on the distribution of the Asian mosquito Aedes albopictus, main vector of dengue, chikungunya, and Zika in Asia and Oceania. Therefore, this work set out to estimate its current and future potential geographic distribution under the Representative Concentration Paths (RCP) 2.6 and 8.5 emission scenarios by 2050 and 2070, using ecological niche models. For this, predictions were made in MaxEnt, employing occurrences of A. albopictus from their native area and South America and bioclimatic variables of these places. It was found that, since its invasion to Colombia, A. albopictus is present in 47% of the country, in peri-urban (20%), rural (23%), and urban (57%) areas between 0 and 1800 m, with Antioquia and Valle del Cauca being the departments with the most registries. The current estimation suggests that A. albopictus is distributed in 96% of the territory up to 3000 m (p < 0.001). Additionally, by 2050 and 2070, below RCP 2.6, its distribution could diminish to nearly 90% including altitudes of 3100 m, while below RCP 8.5 it would be < 60% increasing its distribution up to 3200 m. These results suggest that, currently in Colombia, A. albopictus is found throughout the country and climate change could diminish eventually its area of distribution, but increase its altitudinal range. In Colombia, surveillance and vector control programs must focus their attention on this vector to avoid complications in the national public health setting.


BMC Ecology ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mamadou Ciss ◽  
Biram Biteye ◽  
Assane Gueye Fall ◽  
Moussa Fall ◽  
Marie Cicille Ba Gahn ◽  
...  

Abstract Background Vector-borne diseases are among the leading causes of morbidity and mortality in humans and animals. In the Afrotropical region, some are transmitted by Culicoides, such as Akabane, bluetongue, epizootic haemorrhagic fever and African horse sickness viruses. Bluetongue virus infection has an enormous impact on ruminant production, due to its high morbidity and mortality rates. Methods A nationwide Culicoides trapping campaign was organized at the end of the 2012 rainy season in Senegal. A Maximum Entropy approach (MaxEnt), Boosted Regression Tree (BRT) method and Ecological Niche Factor Analysis (ENFA) were used to develop a predictive spatial model for the distribution of Culicoides, using bio-climatic variables, livestock densities and altitude. Results The altitude, maximum temperature of the warmest month, precipitation of the warmest quarter, mean temperature of the wettest quarter, temperature seasonality, precipitation of the wettest quarter and livestock density were among the most important factors to predict suitable habitats of Culicoides. Culicoides occurrences were, in most of the cases, positively correlated to precipitation variables and livestock densities; and negatively correlated to the altitude and temperature indices. The Niayes area and the Groundnut basin were the most suitable habitats predicted. Conclusion We present ecological niche models for different Culicoides species, namely C. imicola, C. oxystoma, C. enderleini and C. miombo, potential vectors of bluetongue virus, on a nationwide scale in Senegal. Through our modelling approach, we were able to determine the effect of bioclimatic variables on Culicoides habitats and were able to generate maps for the occurrence of Culicoides species. This information will be helpful in developing risk maps for disease outbreaks.


2019 ◽  
Vol 3 (10) ◽  
pp. 1382-1395 ◽  
Author(s):  
Xiao Feng ◽  
Daniel S. Park ◽  
Cassondra Walker ◽  
A. Townsend Peterson ◽  
Cory Merow ◽  
...  

Abstract Reporting specific modelling methods and metadata is essential to the reproducibility of ecological studies, yet guidelines rarely exist regarding what information should be noted. Here, we address this issue for ecological niche modelling or species distribution modelling, a rapidly developing toolset in ecology used across many aspects of biodiversity science. Our quantitative review of the recent literature reveals a general lack of sufficient information to fully reproduce the work. Over two-thirds of the examined studies neglected to report the version or access date of the underlying data, and only half reported model parameters. To address this problem, we propose adopting a checklist to guide studies in reporting at least the minimum information necessary for ecological niche modelling reproducibility, offering a straightforward way to balance efficiency and accuracy. We encourage the ecological niche modelling community, as well as journal reviewers and editors, to utilize and further develop this framework to facilitate and improve the reproducibility of future work. The proposed checklist framework is generalizable to other areas of ecology, especially those utilizing biodiversity data, environmental data and statistical modelling, and could also be adopted by a broader array of disciplines.


2018 ◽  
Vol 7 (12) ◽  
pp. 2451-2458
Author(s):  
Cordilea Hannah ◽  
Joyce Sudandara Priya ◽  
Kasthuri Bhai N.

Camptothecin (CPT) is one of anticancer drug that is widely used for treating various cancers. In India, the drug is primarily sourced from natural habitats of the red listed species Nothapodytes nimmoniana. Ecological niche models are potential tools to define and predict the “ecological niche” of a species that exhibit ecological variations. The predicted ecological niche of a species indicates their survival fitness against Bioclimatic variables. The habitat suitability was predicted using Maxent for different ecotypes of Nothapodytes nimmoniana (Graham.) Mabb. In this study the synonymised populations of N. nimmoniana in the Western Ghats were cogitated as five different ecotypes. The predicted habitat suitability of different ecotypes were evaluated and correlated against CPT content using high performance thin layer chromatography. The study shows a significant positive correlation between the predicted habitat quality and chemical content. The ecotypes growing in sites predicted as highly suitable showed high content of camptothecin compared to those growing in poorly suitable sites. Thereby enabling precise identification of “chemical hot-spots” which will eventually establish a strong foot hold on monoculture of the species, an effort towards conservation.


2021 ◽  
Vol 5 ◽  
Author(s):  
Luis M. Hernández ◽  
Paula Espitia ◽  
David Florian ◽  
Valheria Castiblanco ◽  
Juan Andrés Cardoso ◽  
...  

Spittlebugs (Hemiptera: Cercopidae) are the main tropical pests in Central and South America of cultivated pastures. We aimed to estimate the potential distribution of Aeneolamia varia, A. lepidior, A. reducta, Prosapia simulans, Zulia carbonaria, and Z. pubescens throughout the Neotropics using ecological niche modeling. These six insect species are common in Colombia and cause large economic losses. Records of these species, prior to the year 2000, were compiled from human observations, specimens from CIAT Arthropod Reference Collection (CIATARC), Global Biodiversity Information Facility (GBIF), speciesLink (splink), and an extensive literature review. Different ecological niche models (ENMs) were generated for each species: Maximum Entropy (MaxEnt), generalized linear (GLM), multivariate adaptive regression spline (MARS), and random forest model (RF). Bioclimatic datasets were obtained from WorldClim and the 19 available variables were used as predictors. Future changes in the potential geographical distribution were simulated in ENMs generated based on climate change projections for 2050 in two scenarios: optimistic and pessimistic. The results suggest that (i) Colombian spittlebugs impose an important threat to Urochloa production in different South American countries, (ii) each spittlebug species has a unique geographic distribution pattern, (iii) in the future the six species are likely to invade new geographic areas even in an optimistic scenario, (iv) A. lepidior and A. reducta showed a higher number of suitable habitats across Colombia, Venezuela, Brazil, Peru, and Ecuador, where predicted risk is more severe. Our data will allow to (i) monitor the dispersion of these spittlebug species, (ii) design strategies for integrated spittlebug management that include resistant cultivars adoption to mitigate potential economic damage, and (iii) implement regulatory actions to prevent their introduction and spread in geographic areas where the species are not yet found.


2021 ◽  
Author(s):  
Zhong Qin ◽  
Jia-En Zhang ◽  
Benliang Zhao ◽  
Zhaoji Shi ◽  
Zeheng Xiao ◽  
...  

Abstract The most noxious apple snails (Pomacea canaliculata and P. maculata) native to South America, currently has two distinct invaded ranges in China and the United States. Whether the environmental niches of the two closely related species have changed or remained stable (niche conservatism hypothesis) during the invasion process has become an important issue in forecasting their potential geographic distributions. For each Pomacea snail, two ecological niche models (ENMs, employing BIOMOD2) were generated based on bioclimatic variables and occurrence records in: (1) the native range; (2) the different invasive range. Conservation of ecological niche between the native and invasive snail populations were then tested by principal component and niche dynamics analysis. According to all models, precipitation contributed most to distribution of P. maculata, whereas low temperature was another most influential factor for spread of P. canaliculata. Niche conservatism were indicated by niche similarity tests and high niche stability for both Pomacea snails during their invasions in two regions. Niche expansions of P. canaliculata were relatively larger than unfilling values, whereas niche expansions of P. maculata were lower than unfillings. High niche unfilling for P. maculata in the United States revealed a great potential for further expansion in this region. We discuss the possible roles of physiological tolerances, genetic variation, residence time and hybridization in shaping niche changes for Pomacea snails during their invasion processes. Findings of this work can improve the understanding of potential mechanisms for niche differentiation and provide a theoretical basis for forecasting the invasion potential of Pomacea snails.


Sign in / Sign up

Export Citation Format

Share Document