scholarly journals The Effect of Repeated Prescribed Burning on Soil Properties: A Review

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 767
Author(s):  
Teresa Fontúrbel ◽  
Noela Carrera ◽  
José Antonio Vega ◽  
Cristina Fernández

Prescribed burning is a tool that is frequently used for various land management objectives, mainly related to reduction of hazardous forest fuels, habitat management and ecological restoration. Given the crucial role of soil in forest ecosystem processes and functions, assessing the effects of prescribed burning on soil is particularly relevant. This study reviews research on the impacts of repeated prescribed burning on the physical, chemical and biological properties of soil. The available information shows that the effects are highly variable, rather inconsistent and generally minor for most of the soil characteristics studied, while a number of soil properties show contrasting responses. On the other hand, ecosystem characteristics, differences in fire severity, frequency of application and the cumulative effect of treatment repetition over time, have possibly made it more difficult to find a more common response in soil attributes. Our study has also revealed some limitations of previous research that may have contributed to this result, including a limited number of long-term studies, conducted at a few experimental sites, and in a limited number of forest ecosystems. Research issues concerning the effects of prescribed fire on soil are presented. The need to integrate such research into a broader interdisciplinary framework, encompassing the role of the fire regime on ecosystem functions and processes, is also highlighted.

2009 ◽  
Vol 18 (6) ◽  
pp. 727 ◽  
Author(s):  
Davide Ascoli ◽  
Rachele Beghin ◽  
Riccardo Ceccato ◽  
Alessandra Gorlier ◽  
Giampiero Lombardi ◽  
...  

Calluna vulgaris-dominated heathlands are globally important habitats and extremely scarce outside of north-west Europe. Rotational fire, grazing and cutting by local farmers were dominant features of past heathland management throughout Europe but have been abandoned, altering the historical fire regime and habitat structure. We briefly review research on Calluna heathland conservation management and provide the background and methodology for a long-term research project that will be used to define prescribed fire regimes in combination with grazing and cutting, for management of Calluna heathlands in north-west Italy. We outline the ecological and research issues that drive the fire experiment, making explicit the experimental design and the hypotheses that will be tested. We demonstrate how Adaptive Management can be used to inform decisions about the nature of fire prescriptions where little formal knowledge exists. Experimental plots ranging from 600 to 2500 m2 are treated according to one of eight alternative treatments (various combinations of fire, grazing and cutting), each replicated four times. To date, all treatments have been applied for 4 years, from 2005 to 2008, and a continuation is planned. Detailed measurement of fire characteristics is made to help interpret ecological responses at a microplot scale. The results of the experiment will be fed back into the experimental design and used to inform heathland management practice in north-west Italy.


2021 ◽  
Vol 52 (2) ◽  
pp. 461-470
Author(s):  
Tariq & et al.

The study was conducted to examine the effect of surface burn severity (Moderate, Severe and Unburned) of wheat straw on soil properties. The results showed statistical differences in some soil physical, chemical and biological properties. Bulk density and field capacity increased statistically by the severity of fire; however, porosity and infiltration rate were statistically lower in sever burned plot when compared to unburned plot. The chemical properties, soil organic matter (SOM), P, Ca, S, Cl, K, Mo, Fe and As were not affected by the fire. The pH value was increased slightly by increasing the fire severity, while, EC was decreased when compared with the unburned plot. It was found a statistical reduction in the number of bacterial and fungal cells per gram soil in the burned plots. A moderate and severe fire reduced seed germination percentage significantly. This finding suggests that fire severity may destruct the biological, physical and some of the chemical properties of the soil, and this may impact negatively on plant growth in the next growing season.


2019 ◽  
Vol 139 (3) ◽  
pp. 393-406
Author(s):  
Sarah Cogos ◽  
Samuel Roturier ◽  
Lars Östlund

AbstractIn Sweden, prescribed burning was trialed as early as the 1890s for forest regeneration purposes. However, the origins of prescribed burning in Sweden are commonly attributed to Joel Efraim Wretlind, forest manager in the State Forest district of Malå, Västerbotten County, from 1920 to 1952. To more fully understand the role he played in the development of prescribed burning and the extent of his burning, we examined historical records from the State Forest Company’s archive and Wretlind’s personal archive. The data showed that at least 11,208 ha was burned through prescribed burning between 1921 and 1970, representing 18.7% of the Malå state-owned forest area. Wretlind thus created a new forestry-driven fire regime, reaching, during peak years, extents close to historical fire regimes before the fire suppression era, and much higher than present-day burning. His use of prescribed fire to regenerate forests served as a guide for many other forest managers, spreading to all of northern Sweden during the 1950–1960s. Our analysis of Wretlind’s latest accounts also shows how he stood against the evolutions of modern forestry to defend a forestry system based on the reproduction of natural processes, such as fire.


2020 ◽  
Author(s):  
Orsolya Valkó

<p>Fire is a globally relevant natural or anthropogenic phenomenon with a rapidly increasing importance in the era of the climate change. In each year, approximately 4% of the global land surface burns. For effective ecosystem conservation, we need to understand fire regimes, identify potential threats, and also the possibilities in the application of prescribed burning for maintaining ecosystems.</p><p>Here I provide an overview on the contradictory role of fire in nature conservation from two continents with contrasting fire histories, focusing on European and North-American grasslands. I show that the ecological effects of fire depend on the fire regime, fire history, ecosystem properties and the socio-economic environment. Catastrophic wildfires, arson, too frequent or improperly planned human-induced fire often lead to the degradation of the ecosystems, the disappearance of rare plant and animal species, and to the encroachment of weed and invasive species. I illustrate with examples that these negative fire effects act synergistically with the human-induced changes in land use systems.</p><p>I also underline with case studies that in both regions, properly designed and controlled prescribed burning regimes can aid the understanding and managing disturbance-dependent ecosystems. Conservation in these dynamic and complex ecosystems is far more than fencing and hoping to exclude disturbance; but the contrary: disturbance is needed for ecosystem functioning. Therefore, the conservation of dynamic, diverse and functioning ecosystems often require drastic interventions and an unconventional conservation attitude. However, the expanding urban-wildlife interface makes the application of prescribed burning challenging worldwide. A major message for the future is about fire policy: it is crucial to moderate the negative effects of fire, however, properly designed prescribed burning should be used as a tool for managing and conserving disturbance-dependent ecosystems.</p>


Soil Research ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 733 ◽  
Author(s):  
Romina Romaniuk ◽  
Lidia Giuffré ◽  
Alejandro Costantini ◽  
Norberto Bartoloni ◽  
Paolo Nannipieri

The study evaluates and compares two procedures for selecting soil quality indicators (used for the construction of soil quality indices, SQI) by using diverse chemical, physical, and biological properties, and evaluates the role of soil microbiological properties in the construction of SQI. Different soil environments were selected from an extensive agricultural production site in the rolling pampa, Buenos Aires, Argentina. The plots included an undisturbed soil, a grassland soil, and continuous tilled soils with four different surface horizon depths (25, 23, 19, and 14 cm). Various properties were measured, and a minimum dataset was chosen by principal component analysis (PCA) considering all measured soil properties together (procedure A), or the PCA was performed separately according to classification as physical, chemical, or biological soil properties (procedure B). The measured soil properties involved physical, chemical, and biochemical properties determined by standard protocols used in routine laboratory analysis (simple SQI, SSQI) or more laborious protocols to determine microbial community structure and function by phospholipid fatty acid (PLFA) and catabolic response profile (CRP), respectively (complex SQI, CSQI). The selected properties were linearly normalised and integrated by the weight additive method to calculate SSQI A, SSQI B, CSQI A, and CSQI B indices. Two microbiological SQI (MSQI) were also calculated; MSQI 1 considered only biological properties according to the procedure used for calculating SQI; MSQI 2 was calculated by considering three selected microbiological parameters representing the size (microbial biomass carbon), activity (soil basal respiration), and functional diversity (evenness, determined by CRP) of the microbial communities. All of the constructed indices show the same differences among the study sites. The inclusion of CRP and PLFA data in the indices slightly increased, or did not increase, the index sensitivity. Microbiological indices had the same sensitivity as the indices integrated by physical, chemical, and biological properties. An evaluation of the SQI constructed by both procedures found no difference in sensitivity. However, SQI constructed by procedure B allowed evaluation of the effects of management practices on physical, chemical, and biological soil properties.


2015 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Wan Asrida ◽  
Dian Arival Aryadana

This research is intended to find out the role of the regional environmental impact Control Agency of Batam City against the environmental problems that occur in industrial areas namely, Batam city, concerning sustainable development based upon the environment, the activities of the industry now aims to build an economic sector but has a negative effect that is the pollution of the environment. In this case in Batam city frequent occurrence of environmental pollution caused by industrial activity namely with disposal of waste which are not in place. This research is focused on environmental impact Control Agency area of Batam city authorities in the control of the environment . With the outline of the research issues namely how environmental impact Control Agency the role of the Regions in the control of pollution of the environment against industrial activity in Batam city in 2011-2014 and the factors restricting the role of the regional environmental impact Control Agency in controlling environmental pollution in Batam city in 2011-2014.Type of this research is a descriptive i.e. researchers provide a description and overview of the phenomenon or social symptoms examined by independent variables described in a systematic and accurate. Method of data collection is done by means of interviews and the documentation.The results of this research show that the role of environmental impact Control Agency area of Batam city in pollution control against industrial activity carried out according to its function but have not run well in accordance with the goals and targets that have been set. This is not in accordance with the duties and functions of the regional environmental impact Control Agency of Batam city, resulting in less the maximum role of Bapedalda itself in controlling pollution that occurred in Batam city. So it should be should be able to stake Bapedalda holder which is professional in the discharge of pollution control and must be capable of tackling the obstacles faced.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


Studies of animal locomotion are grounded in an understanding of the physical principles that govern how animals move and properties of the media through which they move. These studies, in turn, explain why certain biological devices, such as a wing or a fin, share features that have evolved for movement within their particular fluid environments. In this chapter, we examine the role of the environment and the fundamentals of loading and forces in animal mechanics. We offer a quick review of scaling analyses as well as the key dimensions and units used in this book to assist with your appreciation of the information.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Valerie S. Densmore ◽  
Emma S. Clingan

Abstract Background Prescribed burning is used to reduce fire hazard in highly flammable vegetation types, including Banksia L.f. woodland that occurs on the Swan Coastal Plain (SCP), Western Australia, Australia. The 2016 census recorded well over 1.9 million people living on the SCP, which also encompasses Perth, the fourth largest city in Australia. Banksia woodland is prone to frequent ignitions that can cause extensive bushfires that consume canopy-stored banksia seeds, a critical food resource for an endangered bird, the Carnaby’s cockatoo (Calyptorynchus latirostris, Carnaby 1948). The time needed for banksias to reach maturity and maximum seed production is several years longer than the typical interval between prescribed burns. We compared prescribed burns to bushfires and unburned sites at three locations in banksia woodland to determine whether low-intensity prescribed burns affect the number of adult banksias and their seed production. Study sites were matched to the same vegetation complex, fire regime, and time-since-fire to isolate fire intensity as a variable. Results Headfire rates of spread and differenced normalized burn ratios indicated that prescribed burning was generally of a much lower intensity than bushfire. The percentage survival of adult banksias and their production of cones and follicles (seeds) did not decrease during the first three years following a prescribed burn. However, survival and seed production were significantly diminished followed high-intensity bushfire. Thus, carrying capacity for Carnaby’s cockatoo was unchanged by prescribed burning but decreased markedly following bushfire in banksia woodland. Conclusions These results suggest that prescribed burning is markedly different from bushfire when considering appropriate fire intervals to conserve canopy habitats in fire-resilient vegetation communities. Therefore, low-intensity prescribed burning represents a viable management tool to reduce the frequency and extent of bushfire impacts on banksia woodland and Carnaby’s cockatoo.


Sign in / Sign up

Export Citation Format

Share Document