scholarly journals Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 999
Author(s):  
Yulia Vasilyeva ◽  
Nikita Chertov ◽  
Yulia Nechaeva ◽  
Yana Sboeva ◽  
Nina Pystogova ◽  
...  

In order to carry out activities aimed at conservation and rational use of forest resources; it is necessary to study the main forest-forming plant species in detail. Scots pine (Pinus sylvestris L., Pinaceae) is mainly found in the boreal forests of Eurasia and is not so often encountered in the east of the East European Plain. The aim of the study was to study the genetic diversity, structure and differentiation of Scots pine populations in the east of the East European Plain. We studied ten populations of P. sylvestris using the Inter Simple Sequence Repeats (ISSR)-based DNA polymorphism detection method. Natural populations are demonstrated by relatively high rates of genetic diversity (He = 0.167; ne = 1.279; I = 0.253). At the same time, there is a tendency for a decrease in the genetic diversity of the studied populations of P. sylvestris from west to east. Analysis of the genetic structure shows that the studied populations are highly differentiated (GST = 0.439), the intrapopulation component accounts for about 56% of the genetic diversity. Using various algorithms for determining the spatial genetic structure, it is found that the studied populations form two groups of populations in accordance with geographic location. With the help of a genetic originality coefficient, populations with specific and typical gene pools are identified. They are recommended as sources of genetic diversity and reserves for the conservation of genetic resources of the species.

Author(s):  
O. S. Zheleznova ◽  
S. A. Tobratov

This paper is devoted to the patterns of radial growth of Scots pine (Pinus sylvestris L.) in various topoecological conditions of the Meshchera lowland (Ryazan region, the East European plain). The generalized tree-ring chronologies are constructed for 16 habitats differing in features of a relief of a day surface and a bedrock surface. Despite the relatively low-contrast relief of Meshchera, the average radial pine increment within the study area differs by 2.5 times (1.53.9 mm per year). The correlation and cluster analyses revealed that the key factor influencing the width of annual tree rings of pine is the amount of the available soil moisture. Its surplus (in wetlands) and deficiency (in conditions of sandy outliers) negatively affects the radial pine increment. It is established that in the waterlogged habitats positive correlation of the radial pine increment with temperature and negative with precipitation of autumn of the previous year is observed. The positive correlation of the radial increment with precipitation of autumn, May and with winter temperature is typical for a pine from arid habitats. The negative relationship between the pines growth and amount of precipitation and river discharge may occur with a lag of 14 years in conditions of wetlands. The positive relationship of the radial pine increment with the integral parameters of the current years moisture is more significant in conditions of relatively high hydrodynamics (for example, in conditions of sandy outliers).


2008 ◽  
Vol 57 (1-6) ◽  
pp. 193-202 ◽  
Author(s):  
I. J. Chybicki ◽  
A. Dzialuk ◽  
M. Trojankiewicz ◽  
M. Slawski ◽  
J. Burczyk

AbstractWhen considering neutral nuclear markers, genetic differentiation of Scots pine (Pinus sylvestris L.) populations is known to be low. The homogeneity arises particularly as an effect of common ancestry in a recent evolutionary history as well as an extensive gene flow, especially through pollen. However, within populations several other forces may shape the spatial distribution of genetic variation, including establishment history, environmental and silvicultural selection. These local forces are known to produce non-random spatial patterns of genetic variation, however little is known on fine-scale spatial genetic structure of Scots pine. In this study, two stands of this species with different establishment histories, selected within one larger population located in northern Poland were genotyped and analysed for genetic variation and within-stand spatial genetic structure. Results revealed no differences in genetic variation, although stands are separated about 60 km, suggesting that the two populations share a common genetic pool. The spatial genetic structure in both stands was found to be slightly different and was attributed to differences in the mode of populations’ establishments. Finally, results confirmed that gene flow in Scots pine is extensive, causing genetic homogeneity within a single population.


CERNE ◽  
2011 ◽  
Vol 17 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Mirian de Sousa Silva ◽  
Fábio de Almeida Vieira ◽  
Dulcinéia de Carvalho

Geonoma schottiana is an underbrush palm which is found in high densities in tropical forests. This species is known for having an asynchronous fruit producing pattern, over all seasons of the year, thus being an important food source for frugivores. This work aims to determine the diversity and spatial genetic structure of two natural populations, referred to as MC I and MC II, of which 60 individuals were sampled, in Poço Bonito Biological Reserve, Lavras, Minas Gerais state. Results of 10 polymorphic isozyme loci indicated a high genetic diversity for the species (Ĥe= 0.428 and Ĥo = 0.570), with an mean number of alleles per locus of 2.0. Estimates of Cockerham's coancestry coefficients indicated an absence of intrapopulation (<img border=0 width=28 height=24 src="../../../../../../img/revistas/cerne/v17n2/a06car02.jpg" > or = -0.343) and interpopulation inbreeding (<img border=0 width=26 height=26 src="../../../../../../img/revistas/cerne/v17n2/a06car01.jpg" > or = -0.161), suggesting that on average populations are not endogamous. A high genetic divergence was found between populations (<img border=0 width=26 height=27 src="../../../../../../img/revistas/cerne/v17n2/a06car03.jpg"> = 13.5%), in comparison to most tropical species (<5%). Consequently, the estimated historical gene flow was low (<img border=0 width=26 height=27 src="../../../../../../img/revistas/cerne/v17n2/a06car04.jpg">m = 0.40). The analysis of spatial distribution of G. schottiana genotypes in MCI revealed a random distribution of genotypes. The high genetic diversity indices found suggest that the populations in question favor in situ genetic conservation, consequently favoring the conservation of riparian environments.


2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Yu. Nechaeva ◽  
N. Pystogova ◽  
N. Chertov ◽  
S. Boronnikova

DNA polymorphism has been studied, indicators of genetic diversity and genetic structure of 3 populations of Pinus sylvestris L. and 3 populations of Pinus sibirica Du Tour in the Perm Krai have been determined. In the populations of P. sibirica, 102 ISSR-PCR markers were found, of which 88 were polymorphic (P95 = 0.863), and in the populations of P. sylvestris — 113 ISSR-PCR markers, 100 of which were polymorphic (P95 = 0.885). The populations of the two studied species of woody plants are characterized by high genetic diversity. At the same time, in P. sibirica, the indices of genetic diversity were slightly higher (HE = 0.195; ne = 1.335; na = 1.330) than in P. sylvestris (HE = 0.166; ne = 1.268; na = 1.212). The analysis of the genetic structure showed that the coefficient of genetic subdivision (GST) in the two studied species of the genus Pinus are similar and amount to 0.320 in P. sibirica and 0.303 in P. sylvestris. The populations of Siberian pine and Scots pine are characterized by an average degree of genetic differentiation, since the interpopulation component accounts for 32.0% and 30.3% of the genetic diversity of these species, respectively. Using the Mantel test, a high correlation was found between genetic and geographical distances in P. sibirica populations (R2 = 0.6871), while P. sylvestris showed a low correlation (R2 = 0.0649). The data obtained are relevant for the preservation of the gene pools of the studied two species of the genus Pinus in the Perm Krai.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1047
Author(s):  
Nicolae Șofletea ◽  
Georgeta Mihai ◽  
Elena Ciocîrlan ◽  
Alexandru Lucian Curtu

Small, isolated populations are more vulnerable to natural disturbances and loss of genetic diversity. Scots pine, an abundant tree species in the boreal forest of Eurasia, has a scattered natural distribution across Eastern and Southern Carpathian Mountains, where only a few relict populations still exist. We estimated genetic diversity and spatial genetic structure in Scots pine on the basis of microsatellite nuclear markers (nSSR) data. We found a relatively high level of genetic diversity (He = 0.697) within populations and no evidence of recent bottlenecks. Genetic diversity was lower in peat bog populations, as compared to populations that grow on rocky slopes or acidic soils and nutrient-poor sites. Population genetic structure was weak, and genetic discontinuities among populations were detected. Spatial genetic structure (SGS) was observed in nearly all Scots pine populations. The strength of SGS, quantified by Sp statistics, varied greatly among populations, ranging from 0.0011 to 0.0207, with an average of 0.01. Our study highlights that Eastern and Southern Carpathian populations still possess high within-population diversity in spite of the recent fragmentation and reduction of the Scots pine natural distribution range. We discuss the importance of spatial patterns of genetic diversity for developing strategies of conservation and sustainable use of Scots pine genetic resources in the Carpathian region.


2019 ◽  
Vol 5 (5) ◽  
pp. 25-30
Author(s):  
Ya. Prishnivskaya ◽  
E. Nassonova ◽  
Yu. Vasileva ◽  
S. Boronnikova

10 pairs of primers from 8 related Pinus sylvestris L. populations collected on East-European plain to 10 genes and 4 primer’s pairs to 4 loci of uncoding clDNA regions. 2 loci of uncoding clDNA regions (psbA-trnH, trnL-trnF) were selected from tested 14 primer’s pairs. These two loci are most polymorphic and has homologous consistencies in data bases. Therefore, these loci is recommended for molecular–genetic identification of related Pinus sylvestris L. populations on East–European plain.


2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


2019 ◽  
Author(s):  
Papius Dias Tibihika ◽  
Manuel Curto ◽  
Esayas Alemayehu ◽  
Herwig Waidbacher ◽  
Charles Masembe ◽  
...  

Abstract Background The need for enhancing the productivity of fisheries in Africa triggered the introduction of non-native fish, causing dramatic changes to local species. In East Africa, the extensive translocation of Nile tilapia (Oreochromis niloticus) is one of the major factors in this respect. Using 40 microsatellite loci with SSR-GBS techniques, we amplified a total of 664 individuals to investigate the genetic structure of O. niloticus from East Africa in comparison to Ethiopian and Burkina Faso populations. Results All three African regions were characterized by independent gene-pools, however, the Ethiopian population from lake Tana showed to be more divergent than expected suggesting that it might be a different species. In East Africa, the genetic structure was congruent with both geographical location and anthropogenic activities. O. niloticus from Lake Turkana (Kenya) was isolated, while in Uganda, despite populations being rather similar to each other, two main natural catchments were able to be defined. We show that these two groups contributed to the gene-pool of different non-native populations. Moreover, admixture and possible hybridization with other tilapiine species may have contributed to the genetic divergence found in some populations such as Lake Victoria. We detected other factors that might be affecting Nile tilapia genetic variation. For example, most of the populations have gone through a reduction of genetic diversity, which can be a consequence of bottleneck caused by overfishing, genetic erosion due to fragmentation or founder effect resulting from stoking activities. Conclusions The anthropogenic activities particularly in the East African O. niloticus translocations, promoted admixture and contact with the native congenerics which may contribute to outbreeding depression and hence compromising the sustainability of the species in the region.


Sign in / Sign up

Export Citation Format

Share Document