scholarly journals Effect of an Ectomycorrhizal Fungus on the Growth of Castanea henryi Seedlings and the Seasonal Variation of Root Tips’ Structure and Physiology

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1643
Author(s):  
Huan Xiong ◽  
Ping Chen ◽  
Wangzun Chen ◽  
Yinghui Yang ◽  
Yijia Jin ◽  
...  

Castanea henryi is a ubiquitous hardwood chestnut species in southern China and is important both ecologically and economically. It is mainly cultivated for nut production, just like other chestnut species. However, the establishment of C. henryi seedlings in a new orchard has proven to be difficult because few seedlings survive transplanting due to the incompatibility of their coarse root architecture with nutrient-depleted red acid soils in southern China. Root architecture can be profoundly modified and nutrient can be stress alleviated due to the association of roots with ectomycorrhizal (ECM) fungi. Boletus edulis is an ECM fungus with edible and medicinal fruiting bodies. However, its impact on plant growth varies with the plant species it is associated with. In order to elucidate the role of B. edulis in C. henryi afforestation, we evaluated growth parameters and soil enzymatic activities, as well as seasonal variations in physiology and structure of ECM root tips. Growth responses and soil enzymatic activities were measured 6 months after inoculation. The physiological characteristics of root tips were also compared at various seasons throughout the year. B. edulis colonization of C. henryi roots was successful at a 60% colonization rate. Height, base diameter, and biomass (especially the underground part) of inoculated seedlings (JG) were higher than those of uninoculated seedlings (CK). JG had higher root total length, root surface area, root volume, root average diameter, and number of root tips than CK. Additionally, JG exhibited higher total nitrogen and phosphorus content. Abnormal mantle and Harting net were observed in winter. No matter the season, ECM tips had higher antioxidant enzyme activities, root activities, soluble protein content, and lower malondialdehyde compared to non-ECM tips (nE) and those without ECM tips (woE), and there were no differences between nE and woE. It is important to understand the growth of the host plant in response to ECM and that the seasonal variation of ECM root tips is important when growing high-quality C. henryi seedlings, due to the crucial role of B. edulis in improving seedling initial survival rate.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1231
Author(s):  
Xiaoman Huang ◽  
Muhammad Atif Muneer ◽  
Jian Li ◽  
Wei Hou ◽  
Changcheng Ma ◽  
...  

Root system plays a crucial role in plant growth and development by uptake of soil nutrients, which is affected by intensive use of NPK fertilizer. However, it is unknown how integrated nutrient management (INM) could affect the root growth and its nutrient uptake in the red soils of southern China. For this, the impacts of different INM practices on root morphological traits and root nutrient uptake were investigated in the pomelo tree. First, we investigated the spatial root distribution of various tree ages (i.e., 8, 13, 18, and 23 years old) and found the optimum root growth at 20–80 cm around the tree trunk in topsoil (0–20 cm). Hence, the pomelo trees were fertilized at 20–80 cm around the trunk, i.e., FFP (farmer fertilization practice), optimization NPK fertilizer (O) combined with lime (L) and mushroom residue (M) known as O+L+M treatment, and O+L combined with Mg fertilizer called as O+L+Mg treatment. We found that root length (RL) significantly increased by application of O+L+M (108.5 and 219.1 cm) and O+L+Mg (73.6, 66.8 cm) in topsoil and subsoil, respectively, in 2019. Similarly, root surface area (RSA) was significantly higher under INM, i.e., O+L+Mg > O+L+M > FFP. For root diameter (RD), O+L+M (0.8 mm) and O+L+Mg (1.5 mm) showed significantly lower diameter than FFP (2.54 mm). The root tips (RT) also improved considerably under INM practices compared with FFP. Besides, root nutrient contents (N, P, K, Ca, and Mg) also significantly improved under O+L+M and O+L+Mg over FFP. Overall, these findings suggest that INM plays a significant role in root development and nutrient uptake under acidic soil, which could be useful for maximizing crop productivity.


2021 ◽  
Vol 7 (7) ◽  
pp. 571
Author(s):  
Dilfuza Jabborova ◽  
Kannepalli Annapurna ◽  
Sangeeta Paul ◽  
Sudhir Kumar ◽  
Hosam A. Saad ◽  
...  

Biochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach (Spinacia oleracea L.). A pot experiment was conducted to evaluate the effect of biochar and AMF on the growth of spinach. Four treatments, a T1 control (soil without biochar), T2 biochar alone, T3 AMF alone, and T4 biochar and AMF together, were arranged in a randomized complete block design with five replications. The biochar alone had a positive effect on the growth of spinach, root morphological traits, physiological properties, and soil enzymatic activities. It significantly increased the plant growth parameters, such as the shoot length, leaf number, leaf length, leaf width, shoot fresh weight, and shoot dry weight. The root morphological traits, plant physiological attributes, and soil enzymatic activities were significantly enhanced with the biochar alone compared with the control. However, the combination of biochar and AMF had a greater impact on the increase in plant growth, root morphological traits, physiological properties, and soil enzymatic activities compared with the other treatments. The results suggested that the combined biochar and AMF led to the highest levels of spinach plant growth, microbial biomass, and soil enzymatic activity.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mengjiao Yang ◽  
Cairong Wang ◽  
Muhammad Adeel Hassan ◽  
Faji Li ◽  
Xianchun Xia ◽  
...  

Abstract Background Phosphorus (P) is an important in ensuring plant morphogenesis and grain quality, therefore an efficient root system is crucial for P-uptake. Identification of useful loci for root morphological and P uptake related traits at seedling stage is important for wheat breeding. The aims of this study were to evaluate phenotypic diversity of Yangmai 16/Zhongmai 895 derived doubled haploid (DH) population for root system architecture (RSA) and biomass related traits (BRT) in different P treatments at seedling stage using hydroponic culture, and to identify QTL using 660 K SNP array based high-density genetic map. Results All traits showed significant variations among the DH lines with high heritabilities (0.76 to 0.91) and high correlations (r = 0.59 to 0.98) among all traits. Inclusive composite interval mapping (ICIM) identified 34 QTL with 4.64–20.41% of the phenotypic variances individually, and the log of odds (LOD) values ranging from 2.59 to 10.43. Seven QTL clusters (C1 to C7) were mapped on chromosomes 3DL, 4BS, 4DS, 6BL, 7AS, 7AL and 7BL, cluster C5 on chromosome 7AS (AX-109955164 - AX-109445593) with pleiotropic effect played key role in modulating root length (RL), root tips number (RTN) and root surface area (ROSA) under low P condition, with the favorable allele from Zhongmai 895. Conclusions This study carried out an imaging pipeline-based rapid phenotyping of RSA and BRT traits in hydroponic culture. It is an efficient approach for screening of large populations under different nutrient conditions. Four QTL on chromosomes 6BL (2) and 7AL (2) identified in low P treatment showed positive additive effects contributed by Zhongmai 895, indicating that Zhongmai 895 could be used as parent for P-deficient breeding. The most stable QTL QRRS.caas-4DS for ratio of root to shoot dry weight (RRS) harbored the stable genetic region with high phenotypic effect, and QTL clusters on 7A might be used for speedy selection of genotypes for P-uptake. SNPs closely linked to QTLs and clusters could be used to improve nutrient-use efficiency.


1975 ◽  
Vol 28 (3) ◽  
pp. 301 ◽  
Author(s):  
MJ Hynes

Mutants of Apergillus nidulanswith lesions in a gene, areA (formerly called amdT), have been isolated by a variety of different selection methods. The areA mutants show a range of pleiotropic growth responses to a number of compounds as sole nitrogen sources, but are normal in utilization of carbon sources. The levels of two amidase enzymes as well as urease have been investigated in the mutants and have been shown to be affected by this gene. Most of the areA mutants have much lower amidase-specific activities when grown in ammonium-containing medium, compared with mycelium incubated in medium la9king a nitrogen source. Some of the areA. mutants do not show derepression of urease upon relief of ammonium repression. The dominance relationships of areA alleles have been investigated in� heterozygous diploids, and these studies lend support to the proposal that areA codes for a positively acting regulatory product. One of the new areA alleles is partially dominant to areA + and areA102. This may be a result of negative complementation or indicate that areA has an additional negative reiuIatory function. Investigation.of various amdR; areA double mutants has led to the conclusion that amdR and areA participate in independent regulatory circuits in the control of acetamide utilizatiol1. Studies on an amdRc; areA.double mutant indicate that areA is involved in derepression of acetamidase upon relief of ammo.nium repression.


2009 ◽  
Vol 30 (11) ◽  
pp. 1205-1214 ◽  
Author(s):  
Zafer Türkmen ◽  
Kültiğin Çavuşoğlu ◽  
Kürşat Çavuşoğlu ◽  
Kürşad Yapar ◽  
Emine Yalçin

2016 ◽  
Vol 43 (7) ◽  
pp. 607 ◽  
Author(s):  
Souid Aymen ◽  
Gabriele Morena ◽  
Longo Vincenzo ◽  
Pucci Laura ◽  
Bellani Lorenza ◽  
...  

In this work we studied the effect of salinity (ranging from 50 to 500 mM NaCl) on the physiological and the antioxidant responses of the local halophyte Limonium delicatulum Kuntze. We based our analysis on 12 biochemical assays that are commonly used to measure the antioxidant responses under stress such as oxidative stress markers, enzymes activities and polyphenolic compounds. Our aim was to study parameters that are strongly correlated with the growth response to salinity. Results showed two different growth responses depending on the concentration of NaCl in the medium. Under 50 to 200 mM, the growth was stimulated before it decreased significantly at 300–500 mM. L. delicatulum revealed a good aptitude to maintain photosynthetic machinery by increasing the concentrations of photosynthetic pigments, which is essential for the stabilisation of photosystems and the photosynthesis process under optimal NaCl concentration. Their breakdown at higher salinity decreased the photosynthetic performance of plants resulting in growth inhibition. Moreover, to reduce the damaging effect of oxidative stress and to tolerate the accumulation of salt ions, L. delicatulum induced the activities of their antioxidant enzymes more than their contents in polyphenolic compounds.


Sign in / Sign up

Export Citation Format

Share Document