scholarly journals Projecting the Range Shifts in Climatically Suitable Habitat for Chinese Sea Buckthorn under Climate Change Scenarios

Forests ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Jinghua Huang ◽  
Guoqing Li ◽  
Jie Li ◽  
Xiaoqin Zhang ◽  
Meijie Yan ◽  
...  
2014 ◽  
Author(s):  
Nicole Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


2014 ◽  
Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260031
Author(s):  
Hussain Ali ◽  
Jaffar Ud Din ◽  
Luciano Bosso ◽  
Shoaib Hameed ◽  
Muhammad Kabir ◽  
...  

Climate change is expected to impact a large number of organisms in many ecosystems, including several threatened mammals. A better understanding of climate impacts on species can make conservation efforts more effective. The Himalayan ibex (Capra ibex sibirica) and blue sheep (Pseudois nayaur) are economically important wild ungulates in northern Pakistan because they are sought-after hunting trophies. However, both species are threatened due to several human-induced factors, and these factors are expected to aggravate under changing climate in the High Himalayas. In this study, we investigated populations of ibex and blue sheep in the Pamir-Karakoram mountains in order to (i) update and validate their geographical distributions through empirical data; (ii) understand range shifts under climate change scenarios; and (iii) predict future habitats to aid long-term conservation planning. Presence records of target species were collected through camera trapping and sightings in the field. We constructed Maximum Entropy (MaxEnt) model on presence record and six key climatic variables to predict the current and future distributions of ibex and blue sheep. Two representative concentration pathways (4.5 and 8.5) and two-time projections (2050 and 2070) were used for future range predictions. Our results indicated that ca. 37% and 9% of the total study area (Gilgit-Baltistan) was suitable under current climatic conditions for Himalayan ibex and blue sheep, respectively. Annual mean precipitation was a key determinant of suitable habitat for both ungulate species. Under changing climate scenarios, both species will lose a significant part of their habitats, particularly in the Himalayan and Hindu Kush ranges. The Pamir-Karakoram ranges will serve as climate refugia for both species. This area shall remain focus of future conservation efforts to protect Pakistan’s mountain ungulates.


2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dol Raj Luitel ◽  
Mohan Siwakoti ◽  
Mohan D. Joshi ◽  
Muniappan Rangaswami ◽  
Pramod K. Jha

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 705 ◽  
Author(s):  
Ying Guo ◽  
Jing Guo ◽  
Xin Shen ◽  
Guibin Wang ◽  
Tongli Wang

Ginkgo (Ginkgo biloba L.) is not only considered a ‘living fossil’, but also has important ecological, economic, and medicinal values. However, the impact of climate change on the performance and distribution of this plant is an increasing concern. In this study, we developed a bioclimatic model based on data about the occurrence of ginkgo from 277 locations, and validated model predictions using a wide-ranging field test (12 test sites, located at the areas from 22.49° N to 39.32° N, and 81.11° E to 123.53° E). We found that the degree-days below zero were the most important climate variable determining ginkgo distribution. Based on the model predictions, we classified the habitat suitability for ginkgo into four categories (high, medium, low, and unsuitable), accounting for 9.29%, 6.09%, 8.46%, and 76.16% of China’s land area, respectively. The ANOVA results of the validation test showed significant differences in observed leaf-traits among the four habitat types (p < 0.05), and importantly the rankings of the leaf traits were consistent with our classification of the habitat suitability, suggesting the effectiveness of our classification in terms of biological and economic significance. In addition, we projected that suitable (high and medium) habitats for ginkgo would shrink and shift northward under both the RCP4.5 and RCP8.5 climate change scenarios for three future periods (the 2020s, 2050s, and 2080s). However, the area of low-suitable habitat would increase, resulting in a slight decrease in unsuitable habitats. Our findings contribute to a better understanding of climate change impact on this plant and provide a scientific basis for developing adaptive strategies for future climate.


2011 ◽  
Vol 62 (9) ◽  
pp. 1043 ◽  
Author(s):  
Nick Bond ◽  
Jim Thomson ◽  
Paul Reich ◽  
Janet Stein

There are few quantitative predictions for the impacts of climate change on freshwater fish in Australia. We developed species distribution models (SDMs) linking historical fish distributions for 43 species from Victorian streams to a suite of hydro-climatic and catchment predictors, and applied these models to explore predicted range shifts under future climate-change scenarios. Here, we present summary results for the 43 species, together with a more detailed analysis for a subset of species with distinct distributions in relation to temperature and hydrology. Range shifts increased from the lower to upper climate-change scenarios, with most species predicted to undergo some degree of range shift. Changes in total occupancy ranged from –38% to +63% under the lower climate-change scenario to –47% to +182% under the upper climate-change scenario. We do, however, caution that range expansions are more putative than range contractions, because the effects of barriers, limited dispersal and potential life-history factors are likely to exclude some areas from being colonised. As well as potentially informing more mechanistic modelling approaches, quantitative predictions such as these should be seen as representing hypotheses to be tested and discussed, and should be valuable for informing long-term strategies to protect aquatic biota.


Sign in / Sign up

Export Citation Format

Share Document