scholarly journals Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 309
Author(s):  
Yiming Sun ◽  
Xiaowei Lin ◽  
Shaodong Zhu ◽  
Jianmeng Chen ◽  
Yi He ◽  
...  

The biotrickling filter (BTF) treatment is an effective way of dealing with air pollution caused by volatile organic compounds (VOCs). However, this approach is typically used for single VOCs treatment but not for the mixtures of VOC and volatile organic sulfur compounds (VOSCs), even if they are often encountered in industrial applications. Therefore, we investigated the performance of BTF for single and ternary mixture gas of dimethyl sulfide (DMS), propanethiol, and toluene, respectively. Results showed that the co-treatment enhanced the removal efficiency of toluene, but not of dimethyl sulfide or propanethiol. Maximum removal rates (rmax) of DMS, propanethiol and toluene were calculated to be 256.41 g·m−3·h−1, 204.08 g·m−3·h−1 and 90.91 g·m−3·h−1, respectively. For a gas mixture of these three constituents, rmax was measured to be 114.94 g·m−3·h−1, 104.17 g·m−3·h−1 and 99.01 g·m−3·h−1, separately. Illumina MiSeq sequencing analysis further indicated that Proteobacteria and Bacteroidetes were the major bacterial groups in BTF packing materials. A shift of bacterial community structure was observed during the biodegradation process.

Science ◽  
2020 ◽  
Vol 369 (6507) ◽  
pp. 1094-1098 ◽  
Author(s):  
Justin A. North ◽  
Adrienne B. Narrowe ◽  
Weili Xiong ◽  
Kathryn M. Byerly ◽  
Guanqi Zhao ◽  
...  

Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.


2012 ◽  
Vol 66 (3) ◽  
pp. 573-579 ◽  
Author(s):  
Weiwei Du ◽  
Wayne Parker

The gas phase partitioning of volatile organic sulfur compounds (VOSCs) in anaerobic sludge digesters contributes to odors and can impact upon the suitability of biogases for use in alternative energy recovery technologies. In the present study, effective Henry's law coefficients (H′) were estimated for methyl mercaptan (MM), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) in both deionized water and deactivated digested sludge. It was found that the complex matrix of digested sludge did not significantly affect the partitioning of VOSCs. Therefore, partitioning of VOSCs in digesters could be represented by their partitioning in clean water. A regression model was developed for the linear relationship between ln H′ and 1/T in the gas-water system. The H′ values of MM, DMS, and DMDS were able to be calculated over a temperature range of 12–58 °C.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 67-72 ◽  
Author(s):  
Y. Chen ◽  
M.J. Higgins ◽  
N.A. Maas ◽  
S.N. Murthy ◽  
W.E. Toffey ◽  
...  

Land application of wastewater biosolids is both economical and beneficial to resource recycling. However, this environmentally friendly practice can be at risk due to odor complaints. Volatile organic sulfur compounds (VOSCs) including methanethiol, dimethyl sulfide, and dimethyl disulfide, have been identified as major contributors to biosolids odor. In this study, methanogens were shown to play a key role in removing VOSCs and reducing odors, and methane production was related to reduced VOSC production. Factors influencing the growth of methanogens such as the shear during dewatering and storage temperature showed a strong impact on net odor production. Examination of the microbial communities of both bacteria and archaea indicated a simplified archaeal community in biosolids, which is susceptible to environmental perturbations. Therefore, one possible odor control strategy is the preservation and enhancement of the methanogenic population during biosolids storage.


2020 ◽  
Vol 20 (4) ◽  
pp. 1264-1270
Author(s):  
Xiang Tu ◽  
Shaohua Chen ◽  
Siyu Wang ◽  
Haiqing Liao ◽  
Xuejiao Deng

Abstract This study investigated the pollution status of volatile organic sulfur compounds (VOSCs) and the factors influencing their spatial distribution in the Xi River in Shenyang, China. A method for simultaneous determination of 14 VOSCs that cause odor in water samples was developed by using purge and trap coupled with gas chromatography and a flame photometric detector. The results indicated that each target compound could be identified from 15 sampling sites, and the total concentration of 14 VOSCs ranged from 2.575 to 52.981 μg L−1. Dimethyl sulfide (DMS) was the most important contaminant with an average concentration of 4.029 μg L−1, a detection rate of 93.33% and a variation coefficient of 0.72. The VOSCs were primarily distributed in suburban and rural sections, and the suburban section was the worst in regard to pollution by VOSCs. Dimethyl trisulfide was primarily distributed in urban and suburban sections of the Xi River due to industrial emissions. Ethanethiol, DMS, and ethyl methyl sulfide, which are typical by-products of microbial anaerobic decomposition from domestic wastewater, were found in abundance in the suburban section. Diethyl sulfide, diethyl disulfide, methyl propyl disulfide, and 1-propyl disulfide representing agricultural nonpoint source pollution were mostly distributed in the rural section.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 451 ◽  
Author(s):  
Tamás Plaszkó ◽  
Zsolt Szűcs ◽  
Zoltán Kállai ◽  
Hajnalka Csoma ◽  
Gábor Vasas ◽  
...  

The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes and their hosts. In this study, the VOCs produced by 43 different fungal isolates of endophytic and soil fungi during growth on horseradish root (Armoracia rusticana) extract or malt extract agar were examined, by using headspace-gas chromatography-mass spectrometry (headspace-GC-MS) and a high relative surface agar film as a medium. The proposed technique enabled sensitive detection of several typical VOCs (acetone, methyl acetate, methyl formate, ethyl acetate, methyl butanol isomers, styrene, beta-phellandrene), along with glucosinolate decomposition products, including allyl cyanide and allyl isothiocyanate and other sulfur-containing compounds—carbon disulfide, dimethyl sulfide. The VOC patterns of fungi belonging to Setophoma, Paraphoma, Plectosphaerella, Pyrenochaeta, Volutella, Cadophora, Notophoma, and Curvularia genera were described for the first time. The VOC pattern was significantly different among the isolates. The pattern was indicative of putative myrosinase activity for many tested isolates. On the other hand, endophytes and soil fungi as groups could not be separated by VOC pattern or intensity.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3816 ◽  
Author(s):  
Tomas Erban ◽  
Ondrej Ledvinka ◽  
Martin Kamler ◽  
Bronislava Hortova ◽  
Marta Nesvorna ◽  
...  

BackgroundMelissococcus plutoniusis an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis melliferaL.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies.MethodsThe study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing.ResultsThe bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence ofM. plutoniusthan those from EFB1 asymptomatic colonies.Melissococcus plutoniuswas identified in all EFB1 colonies as well as in some of the control colonies. The proportions ofFructobacillus fructosus,Lactobacillus kunkeei,Gilliamella apicola,Frischella perrara, andBifidobacterium coryneformewere higher in EFB2 than in EFB1, whereasLactobacillus melliswas significantly higher in EFB2 than in EFB0.Snodgrassella alviandL. melliventris,L. helsingborgensisand,L. kullabergensisexhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence ofBartonella apisandCommensalibacter intestiniwere higher in EFB0 than in EFB2 and EFB1.Enterococcus faecalisincidence was highest in EFB2.ConclusionsHigh-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence ofM. plutoniuswithin the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmittingM. plutoniusdue to the greatly increased incidence of the pathogen. The presence ofM. plutoniussequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms thatE. faecalisis a secondary invader toM. plutonius; however, other putative secondary invaders were not identified in this study.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2851
Author(s):  
Timothy S.B. Wong ◽  
Roger Newman

Volatile organic compounds (VOCs) are prevalent in daily life, from the lab environment to industrial applications, providing tremendous functionality but also posing significant health risk. Moreover, individual VOCs have individual risks associated with them, making classification and sensing of a broad range of VOCs important. This work details the application of electrochemically dealloyed nanoporous gold (NPG) as a VOC sensor through measurements of the complex electrical frequency response of NPG. By leveraging the effects of adsorption and capillary condensation on the electrical properties of NPG itself, classification and regression is possible. Due to the complex nonlinearities, classification and regression are done through the use of a convolutional neural network. This work also establishes key strategies for improving the performance of NPG, both in sensitivity and selectivity. This is achieved by tuning the electrochemical dealloying process through manipulations of the starting alloy and through functionalization with 1-dodecanethiol.


Sign in / Sign up

Export Citation Format

Share Document