scholarly journals Influence of an Impregnation Treatment on the Morphology and Mechanical Behaviour of Flax Yarns Embedded in Hydraulic Lime Mortar

Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 30 ◽  
Author(s):  
Giuseppe Ferrara ◽  
Marco Pepe ◽  
Enzo Martinelli ◽  
Romildo Dias Tolêdo Filho

The increasing attention toward environmental aspects has led, also in the sector of construction materials, to the need for developing more eco-friendly solutions. Among several options, the employment of low energy raw materials appears as an efficient solution intended to enhance the sustainability of building structures. One of the applications moving in this direction is the use of plant fibers as a reinforcement in cement-based composites, hence named as natural textile reinforced mortar (NTRM) composites. Although representing a promising technique, there are still several open issues concerning the variability of plant fibers properties, the durability, and the mechanical compatibility with the mortar. This study aims at investigating the influence of an impregnation process on the thread’s morphology and on the mechanical response. Therefore, the geometry of dry and impregnated flax threads is identified by using scanning electron microscope (SEM) images analysis, and their mechanical response in tension is assessed. In addition, the fibers-to-mortar bond behavior is investigated by means of pull-out tests. The proposed results show that the impregnation procedure employed, although not improving the fibers-to matrix bond, leads to a standardisation of the threads morphology and reduces the thread’s deformability in tension, and paves the way for further investigations on a larger scale.

2014 ◽  
Vol 1000 ◽  
pp. 12-15
Author(s):  
Jiří Švec ◽  
Tomáš Opravil ◽  
Jiří Másilko

Reusing and recycling of secondary raw materials from high-volume industrial productions (especially form construction materials and binders fabrications) is very important way of conserving environment and it is also interesting from the economical point of view. The production of common hydraulic binders, especially Portland cement, burdens the environment with considerable amount of combustion gases and consumes energy in massive scale. Alternative (low – energy) binder can be used as Portland cement substitution in applications with lower mechanical properties requirements. Mined limestone wash sediments contain large amount of clay components, but there is also indispensable share of fine calcite. This composition makes these sediments a promising material for the preparation of hydraulic binders as Roman cement or hydraulic lime.


2014 ◽  
Vol 897 ◽  
pp. 113-116
Author(s):  
Jiri Zach ◽  
Jitka Peterková ◽  
Martin Sedlmajer ◽  
Azra Korjenic

There has been increased effort for achieving enhanced properties of brickwork for external cladding of buildings, in particular as regards thermal insulation. This trend is caused by various factors, while the most important one is general aiming at reduction of energetic demand of buildings (within EU connected with the Regulation of the European Parliament and of the Council 2010/31/EU) and aiming at reduction of energetic demand of production of construction materials and building structures. The price of the products themselves is also important, because it determines their competitive strength in the market. One of the ways of development of thermal insulation brickwork with enhanced end-used properties with low price and minimal demands for material resources is use of secondary raw materials with low value of thermal conductivity. The paper describes possibilities of using granulated PUR material manufactured from water PUR foam used for production of thermal insulation form-pieces with integrated insulation layer.


2015 ◽  
Vol 1100 ◽  
pp. 7-10 ◽  
Author(s):  
Šárka Keprdová

The use of rapidly renewable raw materials in the building industry is seen as very promising with regard not only to the environmental issues but also to its economic aspects. A number of producers, not only in this country, have been trying to replace fine construction materials with secondary raw materials or rapidly renewable ones. As an example, technical hemp is a very promising material due to its good mechanical and thermal insulation characteristics. One of the possibilities is its use as filling component for non-constructional filling materials. Combining binders on the basis of non-hydraulic lime with hemp chaff yields a range of new construction materials. These products offer excellent work characteristics for permanent, environmentally sustainable buildings. These products as a whole form a natural composite construction material that can be used to build insulation walls, floor and roof insulation layers, and to obtain excellent heat and acoustic characteristics of buildings.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2019 ◽  
pp. 145-154
Author(s):  
Svitlana Ishchuk ◽  
Lyubomyr Sozanskyy

Sufficient supply of woodworking with raw materials while preserving the ecology and rational use of wood is a necessary condition for the functioning of the woodworking industry as one of the key segments of the national economy. The issue is of particular importance given the deepening of world integration processes and the introduction of a moratorium on timber exports from Ukraine. It actualizes the study of the state and dynamics of the formation of raw materials potential of domestic woodworks. The purpose of the article is a structural and dynamic assessment of the economic and environmental aspects of formation of the resource potential of Ukrainian woodworks in comparison with the countries of the European Union, as well as in the regional section by types of wood. In the structure of merchantable wood harvested in Ukraine, fuel wood share increased by 4.3 pp. during 2011-2016, whereas in 2017 it increased by 3.8 pp. compared to 2016 and amounted to 61.4%. Unlike in Ukraine, in the vast majority of EU countries business timber is the basis of the structure of harvested merchantable timber. Thus, in the neighboring countries with similar forest landscape – Poland and the Czech Republic – the share of fuel wood in 2017 was 11.6% and 12.3%, in Slovakia – only 6.3%, and in the EU as a whole – 23. 2%. Hence, the significant deterioration of the structure of the harvested merchantable timber in Ukraine can be interpreted as a threat to environmental, and therefore to national security. On the other hand, the results of the assessments revealed an increase in the volume of commercial timber harvesting in Ukraine (in 18 regions) in 2018, as well as in the level of forest reproduction in the leading regions from the harvesting of merchantable timber (Zhytomyr, Kyiv and Rivne regions) and a decrease in the death rate. The restoration of the logical patterns between the dynamics of the loss of stands and the harvesting of commercial and fuel wood are signs of the beginning of positive tendencies in ensuring the preservation and rationalization of raw potential of domestic woodworks and, at the same time, improving the conditions for deepening the level of wood processing. Further authors’ research in this area will be devoted to the search for effective forms of wood industry development in Ukraine, in particular in the Western region.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


2021 ◽  
Vol 11 (8) ◽  
pp. 3545
Author(s):  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
Paolo Pozzi ◽  
Luisa Barbieri

This research reports results of eco-compatible building material obtained without natural raw materials. A mixture of sludge from a ceramic wastewater treatment plant and glass cullet from the urban collection was used to obtain high sintered products suitable to be used as covering floor/wall tiles in buildings. The fired samples were tested by water absorption, linear shrinkage, apparent density, and mechanical and chemical properties. Satisfactory results were achieved from densification properties and SEM/XRD analyses showed a compact polycrystalline microstructure with albite and wollastonite embedded in the glassy phase, similar to other commercial glass-ceramics. Besides, the products were obtained with a reduction of 200 °C with respect to the firing temperatures of commercial ones. Additionally, the realized materials were undergone to leaching test following Italian regulation to evaluate the mobility of hazardous ions present into the sludge. The data obtained verified that after thermal treatment the heavy metals were immobilized into the ceramic matrix without further environmental impact for the product use. The results of the research confirm that this valorization of matter using only residues produces glass ceramics high sintered suitable to be used as tile with technological properties similar or higher than commercial ones.


2018 ◽  
Vol 10 (9) ◽  
pp. 3331 ◽  
Author(s):  
Hao Wang ◽  
Pen-Chi Chiang ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
...  

The construction materials utilized in the building sector have accounted for a large amount of natural resource and energy consumption. Green building, which has developed over three decades, can be regarded as a management and technical approach for building and construction sectors to achieve resource and energy sustainability in building sectors. Therefore, the development and deployment of green construction materials play an important role in the green building field due to the contribution of sustainable resources and energy. To realize the barriers of energy and resources utilization on green building, the development trend, application, and some case studies on wall materials and thermal insulation materials are described. A summary of plant fibers, recycled wastes, and photochromic glass is developed to show applications of green construction materials, which contributes to sustainable development. The challenges and barriers from business, technical, and policy aspects are also reviewed. Finally, perspectives and prospects of green construction material life-cycle framework are illustrated. This paper presents a snapshot review of the importance of wall materials and thermal insulation materials from the point of view of energy and resources consumption.


2020 ◽  
Author(s):  
Carlos Galhano ◽  
Pedro Lamas ◽  
Diogo Seixas

The massive growth of the ceramic industry and the consequent demand for construction materials worldwide has motivated the search for alternative solutions aimed at reducing the use of mineral / natural resources as the main source of raw materials. One of the strategies frequently adopted by the scientific community is the reuse of industrial waste. It is beneficial not only to reduce the overexploitation of mineral resources but also to reduce the environmental, economic and social impacts resulting from their incorrect disposal/treatment and consequent deposition on land unsuitable or that purpose. Duetoconsiderationssuchasphysico-mechanical characteristics and the high production rate, two different types of industrial waste were selected for this work, ashes resulting from the burning of coal in thermoelectric power plant, commonly known as bottom ash (B), and the Marble Powder (MP). It was intended to test the technological feasibility of the manufacture of ceramic materials produced from clay mixtures containing these two residues. For this purpose, the fine fraction(<63μm)obtained from the sieving of the marbleresidue(MR)and slag(Bf)was used,aswellasacoarsergrainslagfractionrangingfrom63-125μm(Bg). The resulting test samples were subjected to a firing of 950 °C under an oxidizing atmosphere, following a primary drying process. Faced with the standard values, the new ceramic materials obtained from MP have seen their mechanical and porous characteristics decrease and increase, respectively. Atthesametime,althoughtheadditionofBinno way influenced the mechanical characteristics,a significant improvement the porous characteristic was observed. The incorporation of these residues produced a color very close to the original sample material. Keywords: industrial waste, ceramic, construction materials, bottom ash, Marble Powder


Sign in / Sign up

Export Citation Format

Share Document