Physic-Mechanical Properties of Cement Composites Consisting of Organic Raw Materials

2015 ◽  
Vol 1100 ◽  
pp. 7-10 ◽  
Author(s):  
Šárka Keprdová

The use of rapidly renewable raw materials in the building industry is seen as very promising with regard not only to the environmental issues but also to its economic aspects. A number of producers, not only in this country, have been trying to replace fine construction materials with secondary raw materials or rapidly renewable ones. As an example, technical hemp is a very promising material due to its good mechanical and thermal insulation characteristics. One of the possibilities is its use as filling component for non-constructional filling materials. Combining binders on the basis of non-hydraulic lime with hemp chaff yields a range of new construction materials. These products offer excellent work characteristics for permanent, environmentally sustainable buildings. These products as a whole form a natural composite construction material that can be used to build insulation walls, floor and roof insulation layers, and to obtain excellent heat and acoustic characteristics of buildings.

2017 ◽  
Vol 265 ◽  
pp. 352-358 ◽  
Author(s):  
N.S. Lupandina ◽  
N.Yu. Kiryushina ◽  
E.V. Porozhnyuk

The purpose of the paper is to determine the possibility of using water purification slime as a raw material in the production of ceramic building brick. The spectrophotometric, power dispersing, atomic and absorption methods of research and biotesting were used. The possibility of using the water purifying slime as a pore-forming component is proved by the production of ceramsite brick. The optimum amount of the component of water purification slime to the main raw materials has been established. The small level of heavy metals leaching from the received construction material has been experimentally proved. The article can be of interest to the experts in the field of creating new construction materials using the production wastes and sewage purifying.


2014 ◽  
Vol 1000 ◽  
pp. 12-15
Author(s):  
Jiří Švec ◽  
Tomáš Opravil ◽  
Jiří Másilko

Reusing and recycling of secondary raw materials from high-volume industrial productions (especially form construction materials and binders fabrications) is very important way of conserving environment and it is also interesting from the economical point of view. The production of common hydraulic binders, especially Portland cement, burdens the environment with considerable amount of combustion gases and consumes energy in massive scale. Alternative (low – energy) binder can be used as Portland cement substitution in applications with lower mechanical properties requirements. Mined limestone wash sediments contain large amount of clay components, but there is also indispensable share of fine calcite. This composition makes these sediments a promising material for the preparation of hydraulic binders as Roman cement or hydraulic lime.


2010 ◽  
Vol 654-656 ◽  
pp. 2644-2647 ◽  
Author(s):  
Joon Seok Park ◽  
In Kyu Kang ◽  
Jong Hwa Park ◽  
Joo Kyung Park ◽  
Hong Taek Kim ◽  
...  

In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength of an RCFFT. The load carrying capacity of proposed RCFFT is discussed based on the result of experimental and analytical investigations.


2010 ◽  
Vol 156-157 ◽  
pp. 939-942 ◽  
Author(s):  
Deng Ling Jiang ◽  
Guo Wei Ni ◽  
Guan Yi Ma

Treatment of municipal wastewater results worldwide in the production of large amounts of sewage sludge. The major part of the dry matter content of this sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary (microbiological) sludge. The sludge also contains a substantial amount of inorganic material and a small amount of toxic components. The large volume of wastewater sludge generated requires enormous landfill space for disposal. Diverting the wastewater sludge from landfill would alleviate the shortage of landfill sites. Thus alternative applications have to be considered for the wastewater sludge diverted away from the landfills. The use of wastewater sludge for the production of construction materials is reviewed in this paper. Wastewater sludge can be used as raw materials for making bricks, concrete filler and concrete aggregates. The study reveals that the reuse of wastewater sludge as construction materials offers a technically feasible alternative for sludge disposal.


2014 ◽  
Vol 90 (05) ◽  
pp. 628-635 ◽  
Author(s):  
Felix Böck

With concerns about climate change and the search for sustainable construction materials, significant attention is now being paid to Africa's natural resources. Ethiopia, known as Africa's political capital, has a rapidly expanding economy with increasing demand for new construction materials. Through public private partnerships projects the country is developing a sustainable business model to promote bamboo as a raw material. The subtropical zone of Ethiopia is home to approximately 65% of Africa's bamboo resources, an area of over 1 million hectares. Bamboo is potentially an ideal source of local, sustainable purpose-engineered building materials for growing cities not only in Ethiopia but across Africa. Production of conventional construction materials such as steel and concrete is expensive, highly energy intensive and unsustainable, requiring large quantities of water and is strongly dependent on imported raw materials. Bamboo is a renewable building material widely cultivated in Ethiopia but not yet utilized in modern construction. Structural Bamboo Products (SBP), similar to engineered wood products, have excellent potential to partially replace the use of more energy-intensive materials. Projects such as African Bamboo are taking steps in managing, cultivating and using Ethiopian bamboo species to help mitigate rapid deforestation in East Africa by creating alternative “wood” sources and sustainable business opportunities.


2014 ◽  
Vol 803 ◽  
pp. 99-109 ◽  
Author(s):  
Muhd Fadhil Nuruddin ◽  
Fareed Ahmed Memon

Concrete has been used in the construction industry since long times. It is probably the most widely used construction material in the world, largely due to the abundance of the raw materials for cement manufacture, low relative cost and the versatility and adaptability of concrete in forming various structural shapes. Massive production of concrete and the associated substantial manufacture of cement have however been observed to have a very negative impact. One of the biggest issues of growing concern at the moment faced by concrete industries is the impact of cement production on the environment. The production of cement not only depletes significant amount of natural resources, but also liberates a considerable amount of carbon dioxide (CO2) and other greenhouse gases into the atmosphere as a result of decarbonation of limestone and the combustion of fossil fuels. In addition, cement is among the most energy intensive construction materials, after aluminium and steel [1].


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6184
Author(s):  
Juan María Terrones-Saeta ◽  
Jorge Suárez-Macías ◽  
Ana María Castañón ◽  
Fernando Gómez-Fernández ◽  
Francisco Antonio Corpas-Iglesias

The construction sector is one of the most demanding sectors of raw materials in existence today. As a consequence, the extraction of these materials has a significant impact on the environment. At the same time, mining activities produce a series of wastes, in some cases with polluting elements, which must be treated to avoid pollution. Therefore, the use of mining waste for the conformation of new construction materials is an important environmental advantage, even more so when such waste is prevented from producing polluting leachates. Therefore, in this research, geopolymers are developed with mine tailings from the Linares lead mines, chemically activated with potassium hydroxide. For this purpose, different percentages of the alkaline activator were tested and the physical and mechanical properties of the conformed materials were evaluated. The analysis of the different conformed geopolymers determined the optimum percentage of potassium hydroxide for conforming the geopolymer with the best mechanical and physical properties. In addition, the concentration in the leachate of potentially contaminating chemical elements in the mining waste was estimated to be lower than those regulated by the regulations. Consequently, this research shows the development of a sustainable material for construction with mining waste and reduction of the environmental impact of traditional products.


Author(s):  
N. Kozhuhova ◽  
V. Strokova ◽  
M. Kozhuhova ◽  
Igor' Zhernovskiy

the efficiency of traditional raw materials using as well as expanding of potential uses for non-conventional and alternative raw materials with different origin is the tasks exiting interest among material scientists and manufacture stuff. Investigation of the above is oriented on solution of such scientific problem as more deep understanding of structure and features of material. The results obtained also allow solution of some technological, technical and economical tasks. Greatly, it is actual when using of new types of raw materials as well as when synthesis of new composites. Concerning the construction material science field, the classic problem is the looking for ways to study the reactivity of raw components under different conditions, its control and, generally, its increasing to produce higher performance materials. Among the popular and widely-used construction materials are alkali-activated binders and relevant composites. In this study the results of granulometric analysis of suspension based on alkali-activated aluminosilicate with different crystallinity degree are presented. It was found, when treatment of aluminosilicate grain by alkali activator leads to the grain solubilizing (but differently depending on crystallinity degree of aluminosilicate) and formation of alkali-aluminosilicate gel that reacts with unreacted part of the grain according to structure affinity principle. It was also determined the crystallinity degree of aluminosilicate component is inversely proportional to its solubility in highly-alkali environment. The model of structure formation for geopolymer system under alkali effect is offered.


Due to increased construction practices there was a very high demand in consumption of raw materials that are to be used in concrete. In the raw materials, sand is one of the major construction materials that is consumed adequately. It’s presence will be vanished due to excessive digging .The effect will be to the nearby localities .As well the stability hydraulic structures nearby river banks will be affected with this. To reduce digging practices the fine aggregate was partially replaced with waste crushed glass in 0%,10%,20%,30% andv40% along with 0.25%Super plasticizer SP 430 to achieve workability. The crushed glass is non-biodegradable and cannot be disposed off, also causes several environmental effects. By utilizing this waste as a useful material in the form as replacing material of fine aggregate we can reduce the waste content and in the same way it can be used as a resource. In order to check the concrete strength and durability tests like Compressive strength test, Split tensile strength test, Flexural strength test for 7,14,28 days curing and acid attack test, rapid chloride permeability test, Abrasion tests were conducted. SEM tests are also conducted on concrete with replaced fine aggregate. The current research work describes the proper utilization of waste crushed glass as a useful construction material.


Sign in / Sign up

Export Citation Format

Share Document