scholarly journals Effect of the Structure Morphology on the Mechanical Properties of Crumpled Graphene Fiber

Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 85
Author(s):  
Julia Baimova ◽  
Polina Polyakova ◽  
Stepan Shcherbinin

Crumpled graphene fiber is a promising structure to be a graphene precursor to enhance the production and mechanical properties of various carbon fibers. The primary goal of the present work is to study the crumpled graphene of different morphologies using molecular dynamics simulations to find the effect of the structural peculiarities on the mechanical properties, such as the tensile strength, elastic modulus, and deformation characteristics. Mono- and poly-disperse structures are considered under uniaxial tension along two different axes. As it is found, both structures are isotropic and stress–strain curves for tension along different directions are very similar. Young’s modulus of crumpled graphene is close, about 50 and 80 GPa; however, the strength of the polydisperse structure is bigger at the elastic regime. While a monodisperse structure can in-elastically deform until high tensile strength of 90 GPa, structure analysis showed that polydisperse crumpled graphene fiber pores appeared two times faster than the monodisperse ones.

2015 ◽  
Vol 1134 ◽  
pp. 56-60 ◽  
Author(s):  
Siti Aisyah Jarkasi ◽  
Dzaraini Kamarun ◽  
Azemi Samsuri ◽  
Amir Hashim Md Yatim

Fillers play important roles in enhancing mechanical properties of NR latex films. The effect of filler dispersion and amount of dispersing agent to the tensile strength and tearing energy of NR latex films were investigated in this study. The studies were carried out by (i) varying the amount of dispersing agent (Anchoid) added which is an anionic surfactant; and (ii) varying the speed of stirring during mixing of latex with compounding ingredients. It was observed that tensile strength and tearing energy were affected by both factors listed. In the case of NR latex film filled with 10 pphr of carbon black (Super Abrasion Furnace, SAF), the optimum stirring speed was 400 rpm and the optimum amount of surfactant was in the range of 5 to 10 % by weight. High tensile strength ranging from 29 - 31 MPa and high tearing energies ranging from 90.6 - 111.0 kJ/m2were achieved from optimization of these two factors; rendering their importance.


2010 ◽  
Vol 4 (4) ◽  
pp. 329-337
Author(s):  
Fabio Pereira ◽  
◽  
Fabiana Vieira ◽  
Luiz de Castro ◽  
Ricardo Michel ◽  
...  

In this work the influence of different configurations in the sample preparation process on commercial polyacrylonitrile-based carbon fibers mechanical tests were studied. Mechanical properties, such as tensile strength, Young’s modulus, elongation and Weibull modulus, were evaluated. The results showed that all sample preparation steps may have strong influence on the results.


2018 ◽  
Vol 941 ◽  
pp. 224-229
Author(s):  
Takahiro Izumi ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Hiroaki Miyanaga

Microstructures and mechanical properties of lap fillet welded joints of several high and ultra-high tensile strength steel by arc welding were investigated. Steel plates having tensile strength of 400 (SPH400W), 590 (SPC590Y, SPC590R), 980 (SPC980Y) and 1500 MPa (SAC1500HP) class with 2 mm thickness were prepared. Four types of joints were formed by MAG welding; SPH400W/SPH400W, SPC590Y/SPC590Y, SPC980Y/SPC980Y and SAC1500HP/SPC590R. In joints with SPC590Y, SPC980Y and SAC1500HP steel which matrixes are martensitic microstructures, the HAZ softens due to transformation of martensite into ferrite with precipitating cementite. By using high and ultra-high tensile strength steel, the weld metal is strengthened due to dilution of the matrix into the weld metal and thus tensile shear strength of the welded joint increases. In the fatigue test, similar S-N diagrams were obtained in the all welded joints investigated. It seems that the effect of stress concentration due to the shape of the welded joint on fatigue properties is larger than that of the strength of the matrix.


2004 ◽  
Vol 13 (1) ◽  
pp. 096369350401300 ◽  
Author(s):  
D. Busquets-Mataix ◽  
N. Martvnez ◽  
M.D. Salvador ◽  
V. Amigσ

Mechanical properties and tribological behaviour of AA6061 and AA7015 aluminium matrix composites reinforced with Ti3Al intermetallics have been studied. Processing of the composites consisted of a combination of powder metallurgy and extrusion techniques. High tensile strength was attained on both alloys, although composites did not improve these properties. Also ductility was impaired on composites, but values above 10% were obtained in every case. Regarding friction coefficient, all composites showed a lower value with respect to base alloys, being lower as the amount of reinforcement increased. Wear behaviour of composites was improved.


2010 ◽  
Vol 146-147 ◽  
pp. 666-669 ◽  
Author(s):  
Xin E Li

Basalt filament yarn is a new type of high-performance fibers, which is formed by the direct drawing of basalt rock at high temperatures. It is a natural and environmentally friendly textile material. This paper mainly focuses on thermal resistance research of basalt filament yarn that is heated at various temperatures. The change of color and appearance of heated basalt filament yarn was described. The mechanical properties of heated basalt filament yarn were tested. The results showed that although the mechanical properties of basalt filament yarn decreased with the temperature rising, still remained high tensile strength within a certain temperature range. Basalt filament yarn possess higher tenacity under 325°C. Basalt filament yarns still possess certain tenacity when they were placed at 500°C condition. So basalt filament yarn can be used as heat-resistant materials, such as filtration materials for high-temperature gas and liquid, fire-proof fabrics and so on.


2014 ◽  
Vol 982 ◽  
pp. 59-62 ◽  
Author(s):  
Filip Vogel

This article discusses about the textile reinforced concrete. The textile reinforced concrete is a new material with great possibilities for modern construction. The textile reinforced concrete consists of cement matrix and textile reinforcement of high strength fibers. This combination of cement matrix and textile reinforcement is an innovative combination of materials for use in the construction. The main advantage of the textile reinforced concrete is a high tensile strength and ductile behavior. The textile reinforced concrete is corrosion resistant. With these mechanical properties can be used textile reinforced concrete in modern construction.


2006 ◽  
Vol 315-316 ◽  
pp. 666-670 ◽  
Author(s):  
Zhen Ping Wan ◽  
Yong Tang ◽  
F.Y. Zhang

Metal fiber manufactured by the methods nowadays available almost could not meet the new requirements any more due to the increasing demands for its properties as it is used more and more widely. In this paper, cutting by multi-tooth tool, a new method, which can bifurcate chip and simultaneously get many pieces of long stainless steel fiber with high tensile strength, good tenacity and corresponding diameter within 100μm even 50μm, is proposed. Tiny fins which induce crystal growth as nucleation in composites can form regularly at the edge of fiber under certain conditions. The fiber possesses unique advantages if it is used to filled, reinforced and porous materials because of its rough surface, fins, high tensile strength and good tenacity.


2010 ◽  
Vol 654-656 ◽  
pp. 1456-1459
Author(s):  
Dayalan R. Gunasegaram ◽  
Robert G. O'Donnell ◽  
Michel Givord ◽  
Barrie R. Finnin

The addition of a constriction in the melt flow path of high pressure die castings is discussed in terms of its influence on modifications to mechanical properties. It is shown through experimentation that the ultimate tensile strength and elongation to fracture of as-cast tensile specimens increased when the melt flowed through a constricted path. It is proposed that defect-forming inclusions were disintegrated more efficiently in the constricted runner through increased strain rates and turbulent dissipation rates. Increased turbulence is also presumed to be the cause for the greater dispersion of defects. The suggestions are supported with calculations aided by computational fluid dynamics simulations.


2012 ◽  
Vol 557-559 ◽  
pp. 286-290
Author(s):  
Zhi Hong Guo ◽  
Jia Wei Shi ◽  
Qun Shao ◽  
Pei Jie Lin ◽  
Yan Ping Wang ◽  
...  

The impact performance of PE can be greatly enhanced by the use of functionalized conch powder, while maintaining high tensile strength thus giving this study high potentiality for its practical applications. The conch powder was treated by titanate coupling agent NDZ-201 before use and the influence of different proportions of conch powder on the mechanical properties of PE/conch powder composite is discussed in this article. The impact strength has a maximum value of 63.4kJ/m2 and the frictional loss records a minimum of 4.27×10-1mm3/(Nm)-1 and 42.2% lower than that of pure PE.


Sign in / Sign up

Export Citation Format

Share Document