scholarly journals Determining Stingray Movement Patterns in a Wave-Swept Coastal Zone Using a Blimp for Continuous Aerial Video Surveillance

Fishes ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
David Ruiz-García ◽  
Kye Adams ◽  
Heidi Brown ◽  
Andrew R. Davis

Stingrays play a key role in the regulation of nearshore ecosystems. However, their movement ecology in high-energy surf areas remains largely unknown due to the notorious difficulties in conducting research in these environments. Using a blimp as an aerial platform for video surveillance, we overcame some of the limitations of other tracking methods, such as the use of tags and drones. This novel technology offered near-continuous coverage to characterise the fine-scale movements of stingrays in a surf area in Kiama, Australia, without any invasive procedures. A total of 98 stingray tracks were recorded, providing 6 h 27 min of movement paths. The tracking data suggest that stingrays may use a depth gradient located in the sandflat area of the bay for orientating their movements and transiting between locations within their home range. Our research also indicates that stingray behaviour was influenced by diel periods and tidal states. We observed a higher stingray occurrence during the afternoon, potentially related to foraging and anti-predatory strategies. We also saw a reduced route fidelity during low tide, when the bathymetric reference was less accessible due to stranding risk. Considering the increasing threat of anthropogenic development to nearshore coastal environments, the identification of these patterns can better inform the management and mitigation of threats.

2020 ◽  
Vol 40 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Kye Adams ◽  
Allison Broad ◽  
David Ruiz-García ◽  
Andrew R. Davis

ABSTRACT Aerial surveys are a powerful means of collecting ecological data in terrestrial and marine systems that may otherwise be difficult to acquire. Increasingly aerial observations are made with Unmanned Aerial Vehicles (UAVs), such as drones. As this technology has improved in reliability and affordability it has replaced the traditional use of fixed-wing aircraft and helicopters. Drones do, however, have limitations; primarily in their limited flight duration, potential to disturb wildlife and concerns over safety. Here we introduce an aerostat, a ground tethered blimp, as a logistically simple and economical alternative to drones and other aircraft. Blimps differ from drones by using helium for lift, thereby conserving battery life. This technology offers the advantage of near-continuous coverage of locations, as well as providing a safe and accessible alternative aerial platform for a range of applications. We demonstrate the viability of blimp-mounted cameras in a notoriously difficult area to conduct research: the high-energy nearshore marine zone. Specifically, we sought to determine the likelihood of encountering marine megafauna using real-time video and whether their presence was correlated with the occurrence of baitfish. Stingrays were observed more often than other species and the occurrence of seals was correlated with the presence of baitfish. The continuous coverage allowed the observation of foraging behaviour in sharks and seals for extended periods. This demonstrates the utility of this novel technique to improve human safety and enhance ecological research.


2018 ◽  
Vol 1 (1) ◽  
pp. 267-275
Author(s):  
Wiktor Filipek ◽  
Krzysztof Broda

Abstract The great interest in the exploitation of sea deposits has in recent years resulted in the creation of many consortia conducting research on various methods of mining and transport to the surface. Exploitation of the shelf areas of crude oil and gas as well as solid minerals is successfully carried out in many places around the world using various methods. More and more often, however, we want to obtain natural resources found at great depths such as polymetallic nodules and massive polymetallic sulphides. This puts much greater demands on scientists and engineers. Unfortunately, solutions developed so far are characterized by high energy consumption. For several years, the authors have been researching new concepts of transport from the seabed. In previous years the authors presented theoretical research results of using a new method involving the use of pyrotechnic materials as a source of energy in transport from the seabed from large depths and experimental ones with the use of potassium nitrate and ammonium nitrate in a controlled pyrotechnic reaction and they compared three conceptions of transport of dredge spoil from the point of view of energy demand. This publication presents the results of the continuation of research, this time on the concept of building an autonomous transport module and its operating principles. The construction of the laboratory stand and the way of conducting experiments are discussed. The results of experimental research are presented, which confirm the possibility of using the discussed concept in transport from the seabed.


2021 ◽  
Vol 306 ◽  
pp. 04006
Author(s):  
Diang Sagita ◽  
Doddy Andy Darmajana ◽  
Dadang Dayat Hidayat

This paper provides a mini-review on the utilization of ohmic heating technology in fermentation processes as a new prospect in postharvest and food science technology. Many scientific studies claim ohmic heatingas a novel technology that offers rapid and uniform heating while causing less thermal harm than traditional heating. Ohmic heating also provides high energy efficiency compared to conventional heating. These advantages make ohmic heating widely applied in various processes and gradually applied to the fermentation process for conditioning the optimum temperature. The principles of ohmic heating have already demonstrated scientific advances and there is steady progress in many sectors, including the food sector. Keeping these considerations, the present review describes several scientific studies related to the use of ohmic heating in the fermentation processes and its potential for further research and development. Several studies have reported that there is an effect of using ohmic heating in the fermentation process and has a positive impact on the results of fermented products.


2006 ◽  
Vol 8 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Gary Lask ◽  
David Friedman ◽  
Monica Elman ◽  
Nathalie Fournier ◽  
Raphi Shavit ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document