CFD analysis of the effect of nozzle stand-off distance on turbulent impinging jets

2013 ◽  
Vol 40 (7) ◽  
pp. 603-612 ◽  
Author(s):  
Mehrdad Shademan ◽  
Ram Balachandar ◽  
Ronald M. Barron

Three-dimensional steady Reynolds Averaged Navier-Stokes simulations have been carried out to investigate the effect of the nozzle stand-off distance on the mean and turbulence characteristics of jets impinging vertically on flat surfaces. As part of the study, the performance of different turbulence models such as Realizable k–ε, k–ω SST, and Reynolds Stress Model (RSM) were evaluated. Based on comparisons with experimental data, RSM was chosen to further evaluate the characteristics of impinging jets. The Reynolds number based on the jet exit velocity and nozzle diameter is 100 000. Three different nozzle height-to-diameter ratios, representing different types of impinging jets, were simulated and compared with available experimental data. A strong dependency of the jet characteristics on the nozzle height-to-diameter ratio was observed. The simulations show that an increase in this ratio results in larger shear stress and more distributed pressure on the wall, more development of the flow in the axial direction and faster progress of the jet in the wall region. The current simulations present a robust step-by-step computational fluid dynamics approach to investigate the role of the nozzle height-to-diameter ratio on the impinging jet flow parameters.

2005 ◽  
Author(s):  
E. Karunakaran ◽  
V. Ganesan

This paper is concerned with the study of performance of popular turbulence models used in the CFD analysis. Turbulence models considered for evaluation include the eddy viscosity models and the Reynolds stress model. The recent k-ε-v2-f model recommended for a flow with separation is also studied. Evaluation of the turbulence models in the present study focuses on a three-dimensional flow field development with adverse pressure gradient and flows that simulate wall-bounded turbulence. Numerical calculations are performed using SIMPLE based algorithm. Nowadays, decelerating flow in a diffuser is assessed by numerical simulations and the validation is done with experimental results. A comparison of the numerical results and the experimental data are presented. The main objective of the comparison is to obtain information on how well the numerical simulations representing the flow field with the standard turbulence models, are able to reproduce the experimental data.


2018 ◽  
Vol 168 ◽  
pp. 02012
Author(s):  
Radomír Chýlek ◽  
Ladislav Šnajdárek ◽  
Jiří Pospíšil

The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD), namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM), were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.


Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


Author(s):  
G. M. Raposo ◽  
A. O. Nieckele

Development of small size and weight separation equipment are crucial for the petroleum off-shore exploration. Since centrifugal fields are several times stronger than the gravity field, cyclonic separation has became very important as a unit process for compact gas-liquid, liquid-liquid and solid-liquid separation. The major difference between the various cyclones is their geometry. Cyclone optimization for different uses is, every year, less based on experiments and more based on mathematical models. In the present work, the flow field inside high oil content hydrocyclones is numerically obtained with FLUENT. The performance of two turbulence models, Reynolds Stress Model (RSM) and Large Eddy Simulation (LES), to predict the flow inside a high oil content hydrocyclone, is investigated by comparing the results with experimental data available in the literature. All models overpredicted the tangential component, especially at the reverse cone region. However, the prediction of the tangential turbulent fluctuations with LES was significant better than the RSM prediction. The influences of the inlet flow rate and hydrocyclone length in the flow were also evaluated. RSM model was able to foresee correctly, in agreement with experimental data, the correct tendency of pressure drop reduction with decreasing inlet flow rate and increasing length.


2020 ◽  
pp. 46-53
Author(s):  
Jakub Mularski ◽  
Amit Arora ◽  
Muhammad Azam Saeed ◽  
Łukasz Niedźwiecki ◽  
Samrand Saeidi

The paper regards the impact of four different turbulence models on the air flow pattern in a confined rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-Gatzki (SSG) Reynolds model, the Menter's shear-stress transport (SST) model and the basic k-ε model. Computational fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found that the k-ε approach generated the least circulating flow.


1979 ◽  
Vol 101 (2) ◽  
pp. 233-245 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch ◽  
P. Kool

An axial compressor end-wall boundary layer theory which requires the introduction of three-dimensional velocity profile models is described. The method is based on pitch-averaged boundary layer equations and contains blade force-defect terms for which a new expression in function of transverse momentum thickness is introduced. In presence of tip clearance a component of the defect force proportional to the clearance over blade height ratio is also introduced. In this way two constants enter the model. It is also shown that all three-dimensional velocity profile models present inherent limitations with regard to the range of boundary layer momentum thicknesses they are able to represent. Therefore a new heuristic velocity profile model is introduced, giving higher flexibility. The end-wall boundary layer calculation allows a correction of the efficiency due to end-wall losses as well as calculation of blockage. The two constants entering the model are calibrated and compared with experimental data allowing a good prediction of overall efficiency including clearance effects and aspect ratio. Besides, the method allows a prediction of radial distribution of velocities and flow angles including the end-wall region and examples are shown compared to experimental data.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


2010 ◽  
Vol 18 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Petras Vaitiekūnas ◽  
Inga Jakštonienė

This paper aims to analyse the problem of numerical modelling of the airflow in a conical reverse‐flow (CRF) cyclone with tangential inlet (equipment for separation of solid particles from gaseous fluid flow). A review of experimental and theoretical papers that describe cyclones with very complex swirling flow is performed. Three‐dimensional transport differential equations for incompressible turbulent flow inside a cyclone are solved numerically using finite volume‐based turbulence models, namely, the Standard k–ϵ model, the RNG k–ϵ model and the Reynolds stress model (RSM). The paper describes the numerical modelling of the airflow in the CRF cyclone, the height of which is 0.75 m, diameter ‐ 0.17 m, height of cylindrical part ‐ 0.255 m, height of conical part ‐ 0.425 m, inlet area is 0.085×0.032 m2. Mathematical model of airflow in a cyclone consisted of Navier‐Stokes (Reynolds) three‐dimensional differential equation system. Modelling results, obtained from the numerical tests when inlet velocity is 4.64, 9.0 and 14.8 m/s and flow rate is, respectively, 0.0112, 0.0245 and 0.0408 (0.0388) m3/s, have demonstrated a reasonable agreement with other authors’ experimental and theoretical results. The average relative error was ± 7.5%. Santrauka Nagrinejama duju aerodinamikos kūginiame grižtamojo srauto (KGS) ciklone (irenginys kietosioms dalelems atskirti iš oro srauto) su tangentiniu srauto itekejimu skaitinio modeliavimo problema. Trimates nespūdžiojo turbulentinio srauto ciklono viduje pernašos diferencialines lygtys skaitiškai sprestos baigtiniu tūriu metodu taikant standartini k–ϵ, RNG k–ϵ ir Reinoldso itempiu (RIM) turbulencijos modelius. Atliktas skaitinis oro srauto judejimo KGS ciklone modeliavimas. Ciklono aukštis – 0,75 m, skersmuo ‐ 0,17 m, cilindrines dalies aukšti ‐ 0,255 m, kūgines ‐ 0,425 m, itekejimo angos plotas 0,085×0,032 m2. Oro srauto judejimo ciklone matematinis modelis – Navje ir Stokso (Reinoldso) trimačiu diferencialiniu lygčiu sistema. Modeliavimo rezultatai, kai itekejimo greitis 4,64, 9,0 bei 14,8 m/s ir debitas – 0,0112, 0,0245 ir 0,0408 (0,0388) m3/s, neblogai sutapo su kitu autoriu eksperimentiniais rezultatais. Vidutine santykine paklaida ‐ ± 8 proc. Резюме Анализируется проблема аэродинамики газового потока в коническом возвратного потока (КВП) циклоне (оборудование для отделения твердых частиц от газового потока) с тангенциальной подачей газа. Произведен обзор экспериментальных и теоретических работ в циклонах такого типа, в которых образуется сложное вихревое течение потока. Для моделирования использованы трехмерные дифференциальные уравнения переноса, численно решаемые методом конечных объемов с использованием следующих моделей: стaндартной k–e, RNG k–e и рейнольдсовой модели турбулентности напряжений. Произведено численное моделирование движения потока воздуха в циклоне КВП, высота которого 0,75 м, диаметр – 0,17 м, высота цилиндрической части – 0,255 м, конической части – 0,425 м, площадь входного отверстия – 0,085×0,032 м 2 . Математическую модель движения потока воздуха в циклоне составила система трехмерных дифференциальных уравнений Навье-Стокса и Рейнольдса. Анализ результатов, произведенный при скоростях втекания в циклон 4,64, 9,0 и 14,8 м/с (дебит – 0,0112, 0,0245 и 0,0408 м 3 /c) и для модели рейнольдсовых напряжений, показал приемлемую согласованность с результатами других исследователей – со средней относительной погрешностью ± 7,5 проц.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 137 ◽  
Author(s):  
Mingrui Liu ◽  
Xiuling Wang

Three-dimensional urban wind field construction plays an important role not only in the analysis of pedestrian levels of comfort but also in the effectiveness of harnessing wind energy in an urban environment. However, it is challenging to accurately simulate urban wind flow due to the complex land use in urban environments. In this study, a three-dimensional numerical model was developed for urban wind flow construction. To obtain an accurate urban wind field, various turbulence models, including the Reynolds stress model (RSM), k-ω shear stress transport (SST), realizable k-ε, and (Re-Normalisation Group (RNG) k-ε models were tested. Simulation results were compared with experimental data in the literature. The RSM model showed promising potential in simulating urban wind flow. The model was then adopted to simulate urban wind flow for Purdue University Northwest, which is located in the Northwest Indiana urban region. Based on the simulation results, the optimal location was identified for urban wind turbine siting.


Author(s):  
L. J. Lenke ◽  
H. Simon

The numerical simulation of the flow within a return channel is reported in this paper. The investigated return channel is typically to join the exit from one stage of a centrifugal machine to the inlet of the next stage. These channel covers the range of extremely low flow coefficients. Different 3-D calculations with two different turbulence models (low-Reynolds-number k-ϵ and explicit algebraic Reynolds stress model) at the design point and part load range show the strongly three-dimensional flow structure with secondary flows on hub and shroud of the deswirl vanes. There are also significant separations downstream of the 180°-bend at suction and pressure side of the vanes. The presented numerical results are compared with experimental data in different planes and at the vane contour. The results indicate small differences between the turbulence models in the prediction of losses, flow angles and separation behavior at design point. At off-design conditions the turbulence models begin to deviate notably in their prediction of separation.


Sign in / Sign up

Export Citation Format

Share Document