scholarly journals Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1774
Author(s):  
Hendrik Schulze ◽  
Johann Hornbacher ◽  
Paulina Wasserfurth ◽  
Thomas Reichel ◽  
Thorben Günther ◽  
...  

The vegetable watercress (Nasturtium officinale R.Br.) is, besides being a generally nutritious food, a rich source of glucosinolates. Gluconasturtiin, the predominant glucosinolate in watercress, has been shown to have several health beneficial properties through its bioactive breakdown product phenethyl isothiocyanate. Little is known about the immunoregulatory effects of watercress. Moreover, anti-inflammatory effects have mostly been shown in in vitro or in animal models. Hence, we conducted a proof-of-concept study to investigate the effects of watercress on the human immune system. In a cross-over intervention study, 19 healthy subjects (26.5 ± 4.3 years; 14 males, 5 females) were given a single dose (85 g) of fresh self-grown watercress or a control meal. Two hours later, a 30 min high-intensity workout was conducted to promote exercise-induced inflammation. Blood samples were drawn before, 5 min after, and 3 h after the exercise unit. Inflammatory blood markers (IL-1β, IL-6, IL-10, TNF-α, MCP-1, MMP-9) were analyzed in whole blood cultures after ex vivo immune cell stimulation via lipopolysaccharides. A mild pro-inflammatory reaction was observed after watercress consumption indicated by an increase in IL-1β, IL-6, and TNF-α, whereas the immune response was more pronounced for both pro-inflammatory and anti-inflammatory markers (IL-1β, IL-6, IL-10, TNF-α) after the exercise unit compared to the control meal. During the recovery phase, watercress consumption led to a stronger anti-inflammatory downregulation of the pro-inflammatory cytokines IL-6 and TNF-α. In conclusion, we propose that watercress causes a stronger pro-inflammatory response and anti-inflammatory counter-regulation during and after exercise. The clinical relevance of these changes should be verified in future studies.

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 378 ◽  
Author(s):  
Azahara Rodríguez-Luna ◽  
Javier Ávila-Román ◽  
María González-Rodríguez ◽  
María Cózar ◽  
Antonio Rabasco ◽  
...  

Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.


2018 ◽  
Vol 5 (02) ◽  
pp. e55-e60
Author(s):  
Leo Fitzpatrick ◽  
Ella Mokrushin ◽  
George Talbott ◽  
Tibebe Woldermariam

AbstractSilymarin has anti-inflammatory properties and documented anti-colitis activity. Our prior study determined that in vitro treatment with certain extracted fractions of silymarin inhibited stimulated proinflammatory cytokine secretion from cell lines relevant to colitis. In this study, colitis was induced in mice by giving dextran sulfate sodium drinking water for 6 days. The ex vivo effects of crude silymarin extract, two different silymarin fractions, as well as commercially derived silibinin and isosilibinin were examined by determining the secretion of MIP-2, TNF-α, and IL-17 in cell culture media from colonic strips. Further, the effects of silymarin-derived treatments on IL-8 and TNF-α secretion induced by the colitis supernatant was characterized with HT-29 colonic epithelial and RAW 264.7 macrophage cell lines. Prominent inhibition of MIP-2 and TNF-α secretion from colonic strips of mice with/without dextran sulfate sodium-induced colitis was observed with various silymarin treatments. Further, inhibition of dual (IL-23+IL-1β) cytokine-stimulated secretion of IL-17 from colonic strips of mice was found with certain silymarin treatments. Significant attenuation of TNF-α secretion from colitis supernatant-stimulated RAW 264.7 cells was observed for crude silymarin extract and isosilibinin treatments. Finally, inhibition of IL-8 secretion from the colitis supernatant-stimulated HT29 colonic epithelial cell line was found with isosilibinin. These results contribute to the identification of silymarin-derived flavonoligans with optimal anti-inflammatory properties for further testing in colitis models.


2021 ◽  
Vol 14 (6) ◽  
pp. 588
Author(s):  
Chi-Han Huang ◽  
Shu-Chi Wang ◽  
I-Chen Chen ◽  
Yi-Ting Chen ◽  
Po-Len Liu ◽  
...  

Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1β production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1β, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


2019 ◽  
Vol 98 (12) ◽  
pp. 1386-1396 ◽  
Author(s):  
X. Hong ◽  
S.N. Min ◽  
Y.Y. Zhang ◽  
Y.T. Lin ◽  
F. Wang ◽  
...  

IgG4-related sialadenitis (IgG4-RS) is a newly recognized immune-mediated systemic fibroinflammatory disease that affects salivary glands and leads to hyposalivation. Tumor necrosis factor–α (TNF-α) is a critical proinflammatory cytokine involved in several salivary gland disorders, but its role and mechanism regarding acinar cell injury in IgG4-RS are unknown. Here, we found that TNF-α level was significantly increased in serum and submandibular gland (SMG) of patients and that serum TNF-α level was negatively correlated with saliva flow rate. Ultrastructural observations of IgG4-RS SMGs revealed accumulation of large autophagic vacuoles, as well as dense fibrous bundles, decreased secretory granules, widened intercellular spaces, swollen mitochondria, and expanded endoplasmic reticulum. Expression levels of LC3 and p62 were both increased in patients’ SMGs. TNF-α treatment led to elevated levels of LC3II and p62 in both SMG-C6 cells and cultured human SMG tissues but did not further increase their levels when combined with bafilomycin A1 treatment. Moreover, transfection of Ad-mCherry-GFP-LC3B in SMG-C6 cells confirmed the suppression of autophagic flux after TNF-α treatment. Immunofluorescence imaging revealed that costaining of LC3 and the lysosomal marker LAMP2 was significantly decreased in patients, TNF-α–treated SMG-C6 cells, and cultured human SMGs, indicating a reduction in autophagosome-lysosome fusion. Furthermore, the ratio of pro/mature cathepsin D was elevated in vivo, ex vivo, and in vitro. TNF-α also appeared to induce abnormal acidification of lysosomes in acinar cells, as assessed by lysosomal pH and LysoTracker DND-26 fluorescence intensity. In addition, TNF-α treatment induced transcription factor EB (TFEB) redistribution in SMG-C6 cells, which was consistent with the changes observed in IgG4-RS patients. TNF-α increased the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2, and inhibition of ERK1/2 by U0126 reversed TNF-α–induced TFEB redistribution, lysosomal dysfunction, and autophagic flux suppression. These findings suggest that TNF-α is a key cytokine related to acinar cell injury in IgG4-RS through ERK1/2-mediated autophagic flux suppression.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 370-370
Author(s):  
Lauren L Kovanda ◽  
Monika Hejna ◽  
Yanhong Liu

Abstract The aim of this experiment was to examine the anti-inflammatory effects of butyric acid, sodium butyrate, monobutyrin and tributyrin using porcine alveolar macrophages (PAMs). PAMs were isolated from the bronchial lavage of 6 piglets at 6 weeks of age, and then seeded at 106 cells/mL in 24-well plates. After 24 h incubation, cells were treated with different treatments in a randomized complete block design with 10 replicates. The treatments were in a factorial arrangement with 2 doses of lipopolysaccharide (LPS, 0 or 1 μg/mL) and 5 levels of organic acid (0, 0.5, 1, 2, 4 mM for butyric acid and tributyrin and 0, 1, 2, 4, 8 mM for sodium butyrate and monobutyrin). Supernatants were collected after another 24 h incubation and analyzed for tumor necrosis factor alpha (TNF-α). Cell viability was also tested by the MTT assay. Data were analyzed using the MIXED procedure of SAS. No cytotoxic effect was observed in LPS challenge and each organic acid with the percentage of live cells was more than 76% in comparison to the sham control. Sodium butyrate at 2 and 4 mM dose exhibited (P &lt; 0.01) a stimulatory effect on cell proliferation. LPS challenge remarkably stimulated (P &lt; 0.0001) TNF-α secretion from PAMs. In the non-challenge group, butyric acid, monobutyrin, and tributyrin linearly reduced TNF-α production from PAMs, whereas 2 mM sodium butyrate tended to increase (P = 0.056) TNF-α secretion from PAMs. In the LPS challenge group, all tested organic acid dose-dependently reduced (P &lt; 0.001) TNF-α production from LPS-challenged PAMs, with the strongest inhibiting effect observed at the highest dose. Results indicated that butyric acid and its derivatives that were tested in the current experiment all had strong anti-inflammatory activities in vitro.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 48
Author(s):  
Laura Micheli ◽  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Elena Lucarini ◽  
Carla Ghelardini ◽  
...  

Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.


Sign in / Sign up

Export Citation Format

Share Document