scholarly journals Functional Genomic Insights into Probiotic Bacillus siamensis Strain B28 from Traditional Korean Fermented Kimchi

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1906
Author(s):  
So-Jeong Heo ◽  
Jong-Hoon Kim ◽  
Mi-Sun Kwak ◽  
Do-Won Jeong ◽  
Moon-Hee Sung

Bacillus siamensis strain B28 was previously isolated from traditional Korean fermented kimchi and inhibited expression of the microphthalmia-associated transcription factor and β-catenin in human embryonic kidney 293 cells. Here, we determined the complete genome sequence of strain B28 and compared it with other strains to elucidate its potential probiotic properties. Strain B28 does not contain antibiotic resistance-, hemolysin- or enterotoxin-encoding genes. The genome includes genes related to survival in extreme conditions, adhesion in the gut, and synthesis of the bacteriocin. Considering the potential for enhancement of human health, the strain B28 genome encodes genes related to production of eight essential amino acids, γ-aminobutyric acid, branched-chain fatty acids, γ-glutamyltransferase, and subtilisin. There are genes for the synthesis of uracil, lipoteichoic acid, glutathione, and several reactive oxygen species-scavenging enzymes. Experimentally, strain B28 exhibited sensitivity to eight antibiotics and antibacterial activity against seven foodborne pathogens. B. siamensis B28 is a safe strain with potential for development as a probiotic.

Author(s):  
S. E. Dubenko ◽  
T. V. Mazhaeva ◽  
G. M. Nasybullina

Th e authors reviewed literature on methodic evaluations of human requirements of protein, based on Russian and foreign data bases (Scopus, Web of Science, MedLine, RINTs, eLIBRA RY) via key words in article headings, and evaluated quality and quantity of protein in diets of workers exposed to occupational hazards. Average requirements of amino acids and their additional intake for bett er health state in certain occupational groups remains a topical problem. Th e article covers list of methods for quantitative and qualitative evaluation of proteins in foods and diets. Findings are diff erences in approaches to protein quantity regulation in Russian Federation and WHO/FAO/UNU (protein normal level in RF is higher, depends on physical exertion, with lower quantity of amino acids with branched chain in structure of essential amino acids). Th erapeutic and prophylactic diet corresponding to Order N46 of Russian Health Ministry for main occupations of metallurgic workshops can be considered as high-proteous and balanced in amino acid contents. Necessity is to study adequate intake of amino acids in workers exposed to occupational hazards, for improving protective and adaptative body mechanisms, and prevention of occupational and occupationally conditioned diseases.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3341
Author(s):  
Alessandra Frau ◽  
Lauren Lett ◽  
Rachael Slater ◽  
Gregory R. Young ◽  
Christopher J. Stewart ◽  
...  

The fecal metabolome in early life has seldom been studied. We investigated its evolution in pre-term babies during their first weeks of life. Multiple (n = 152) stool samples were studied from 51 babies, all <32 weeks gestation. Volatile organic compounds (VOCs) were analyzed by headspace solid phase microextraction gas chromatography mass spectrometry. Data were interpreted using Automated Mass Spectral Deconvolution System (AMDIS) with the National Institute of Standards and Technology (NIST) reference library. Statistical analysis was based on linear mixed modelling, the number of VOCs increased over time; a rise was mainly observed between day 5 and day 10. The shift at day 5 was associated with products of branched-chain fatty acids. Prior to this, the metabolome was dominated by aldehydes and acetic acid. Caesarean delivery showed a modest association with molecules of fungal origin. This study shows how the metabolome changes in early life in pre-term babies. The shift in the metabolome 5 days after delivery coincides with the establishment of enteral feeding and the transition from meconium to feces. Great diversity of metabolites was associated with being fed greater volumes of milk.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Vitaliy B. Borisov ◽  
Sergey A. Siletsky ◽  
Martina R. Nastasi ◽  
Elena Forte

Reactive oxygen species (ROS) comprise the superoxide anion (O2·−), hydrogen peroxide (H2O2), hydroxyl radical (·OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1808
Author(s):  
Iris Trefflich ◽  
Stefan Dietrich ◽  
Annett Braune ◽  
Klaus Abraham ◽  
Cornelia Weikert

A vegan diet could impact microbiota composition and bacterial metabolites like short-chain (SCFA) and branched-chain fatty acids (BCFA). The aim of this study was to compare the concentrations of SCFA, BCFA, ammonia, and fecal pH between vegans and omnivores. In this cross-sectional study (vegans n = 36; omnivores n = 36), microbiota composition, fecal SCFA, BCFA, and ammonia concentrations and pH were analyzed in complete stool samples. A random forest regression (RFR) was used to identify bacteria predicting SCFA/BCFA concentrations in vegans and omnivores. No significant differences in SCFA and BCFA concentrations were observed between vegans and omnivores. Fecal pH (p = 0.005) and ammonia concentration (p = 0.01) were significantly lower in vegans than in omnivores, while fiber intake was higher (p < 0.0001). Shannon diversity was higher in omnivores compared to vegans on species level (p = 0.04) only. In vegans, a cluster of Faecalibacterium prausnitzii, Prevotella copri, Dialister spp., and Eubacterium spp. was predictive for SCFA and BCFA concentrations. In omnivores, Bacteroides spp., Clostridium spp., Ruminococcus spp., and Prevotella copri were predictive. Though SCFA and BCFA did not differ between vegans and omnivores, the results of the RFR suggest that bacterial functionality may be adapted to varying nutrient availability in these diets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Shi ◽  
Di Zhao ◽  
Fan Zhao ◽  
Chong Wang ◽  
Galia Zamaratskaia ◽  
...  

AbstractThis study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.


2021 ◽  
pp. 106398
Author(s):  
Peter J. Watkins ◽  
Jerad R. Jaborek ◽  
Fei Teng ◽  
Li Day ◽  
Hardy Z. Castada ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Béatrice S.-Y. Choi ◽  
Noëmie Daniel ◽  
Vanessa P. Houde ◽  
Adia Ouellette ◽  
Bruno Marcotte ◽  
...  

AbstractAnimal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document