scholarly journals Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2519
Author(s):  
Vojtěch Kumbár ◽  
Veronika Kouřilová ◽  
Renáta Dufková ◽  
Jiří Votava ◽  
Luděk Hřivna

Chocolate masses are one of the basic raw materials for the production of confectionery. Knowledge of their rheological and flow behaviour at different temperatures is absolutely necessary for the selection of a suitable technological process in their production and subsequent processing. In this article, the rheological properties (the effect of the shear strain rate on the shear stress or viscosity) of five different chocolate masses were determined—extra dark chocolate (EDC), dark chocolate (DC), milk chocolate (MC), white chocolate (WC), and ruby chocolate (RC). These chocolate masses showed thixotropic and plastic behaviour in the selected range of shear rates from 1 to 500 s−1 and at the specified temperatures of 36, 38, 40, 42, and 44 °C. The degree of thixotropic behaviour was evaluated by the size of the hysteresis area, and flow curves were constructed using the Bingham, Herschel–Bulkley and Casson models with respect to the plastic behaviour of the chocolate masses. According to the values of the coefficients of determination R2 and the sum of the squared estimate of errors (SSE), the models were chosen appropriately. The most suitable models are the Herschel–Bulkley and Casson models, which also model the shear thinning property of the liquids (pseudoplastic with a yield stress value). Using the coefficients of the rheological models and modified equations for the flow velocity of technical and biological fluids in standard piping, the 2D and 3D velocity profiles of the chocolate masses were further successfully modelled. The obtained values of coefficients and models can be used in conventional technical practice in the design of technological equipment structures and in current trends in the food industry, such as 3D food printing.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2013 ◽  
Vol 457-458 ◽  
pp. 65-71
Author(s):  
Jing Ru Jia

The polyfunctional organic compounds 2- hydroxymethyl -1,4- butanediol (trihydric alcohol) and toluene diisocyanate -2, 4- diisocyanate (TDI) were taken as the raw materials in this study. A polyurethane dendrimer was synthesized by utilizing the difference in the reaction activity of two isocyanate groups of TDI at different temperatures. The polymerization process conditions were studied. The addition polymerization of para-position NCO groups occurred at 50 °C, and that of ortho NCO groups occurred at 90 °C. According to the structure of the dendrimer synthesized, methyl orange was used as the guest molecule. Consequently, the aqueous methyl orange showed a phase transfer. With the increase of dendrimer concentration, the transfer rate of methyl orange increased.


1978 ◽  
Vol 41 (5) ◽  
pp. 344-347 ◽  
Author(s):  
O. PENSALA ◽  
A. NISKANEN ◽  
S. LINDROTH

Unsweetened and sweetened (20 and 44% sucrose) black currant, blueberry and strawberry jams with spores of Aspergillus parasiticus NRRL 2999 were incubated at different temperatures and atmospheres for 0.5, 1, 2, and 6 months. Hyphal dry weight, pH of medium and aflatoxin production were examined. Also, the aflatoxin distribution between mold and jam layers was examined in jam with uncontrolled and controlled pH (initial pH 3.1–3.6 and 5.6 respectively) and in 20% yeast extract sucrose broth (initial pH 5.6) after 2 weeks of incubation. Aflatoxin was observed in black currant and strawberry jams stored at 22 and 30 C, but not in blueberry jam. Addition of sugar prevented production of aflatoxin in detectable amounts, although it enhanced fungal growth. Storage at 4 C resulted in a marked reduction in fungal growth. The high CO2 atmosphere prevented production of aflatoxin in detectable amounts in black currant and blueberry jams but not in strawberry jam. Raising the initial pH of the stored jam caused an increase in aflatoxin synthesis, although the amount of fungal mycelium, in contrast was reduced. Aflatoxin synthesis as a function of fungal growth was significantly weaker in the jams than in the yeast extract sucrose broth. The results imply that the jam raw materials, particularly blueberry, contain substances inhibiting production of atlatoxins. Alternatively, it is also possible that the jam materials contain only small amounts of nutrients necessary for synthesis of aflatoxin.


Author(s):  
Oleksiy Andryushayev ◽  
Olena Ruban ◽  
Yuliia Maslii ◽  
Inna Rusak

The aim. To determine the intensified method of extraction of phenolic compounds from Acorus calamus leaves and optimal conditions for the process. Materials and methods. In order to develop the optimal intensified method of extraction samples were prepared in different conditions of raw materials-extractant ratio, temperature, time and multiplicity. As a raw materials spectrophotometrically pre-standardized Acorus calamus leaves were used. The extraction was carried out in a hermetically sealed ultrasonic extraction reactor PEX 1 (REUS, Contes, France). As the criteria of extraction efficiency were indicators of dry residue and total amount of flavonoids determined using methods described in State Pharmacopoeia of Ukraine. The amount of flavonoids was determined spectrophotometrically on a certified device Specord 200 (Analytik Jena, Germany). Results. According to our research results it was found that ultrasonic action and addition of surfactant significantly improves the efficiency of the extraction process. The optimal conditions for the process were determined. Experimentally proved that the rational raw material-extractant ratio is 1:15. Comparative study of the extraction process with different temperatures showed that the highest amount of extractives is achieved at temperature 70 °C and 45 min of duration. The optimal extraction multiplicity is 3. Conclusions. As a result of the study, the intensified extraction method for Acorus calamus leaves – re-maceration with ultrasound – was established. The conducted researches allowed to develop the method of extraction, expedient in the conditions of the modern pharmaceutical industry.


2021 ◽  
Vol 11 (5) ◽  
pp. 39-48
Author(s):  
Ildikó Fóris ◽  
Gábor Mucsi

Glass foam tablets were produced from container glass bottles (CGB) using eggshell waste (ESW) and perlite (P) as foaming agent in different portions. The ground raw materials (CGB, ESW, P) were homogenized and pressed with hydraulic piston press machine at different pressures (in the case of P containing tablets 30 MPa and ESW containing tablets 15 MPa, 30 MPa and 40 MPa were used).The obtained glass tablets were heat treated at different temperatures (in the case of P containing tablets 800 °C, 900°C, 1000°C and 1100°C, and ESW containing tablets 600 °C, 700 °C, 800 °C and 900 °C were used). The study shows the specimen density of tablets before and after heat treatment, as well as the true density of the powder mixtures before tableting and the abrasion resistance of the glass foam products.


Surfactants ◽  
2019 ◽  
pp. 400-424
Author(s):  
Bob Aveyard

Lyophobic colloidal dispersions, aggregated surfactant systems, and polymer solutions, as well as foams and emulsions, can all be deformed by weak external forces; rheology is the study of deformation and flow of materials. Various rheological quantities arising from the response of a material to shear are defined. For liquids the stress, τ‎, applied is related to the rate of deformation, that is, the shear strain rate, γ̇. For Newtonian fluids τ‎ and γ̇ are linearly related and τ‎ / γ̇ is the viscosity, η‎. Other nonlinear relationships correspond to shear thinning and shear thickening fluids and to plastic behaviour in which there is a yield stress. Viscoelastic systems exhibit both viscous and elastic properties; such behaviour is often treated using the simple Maxwell model. Some illustrative experimentally observed rheological behaviour is presented.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Abstract It is nowadays well accepted that the steady state rheological behavior of drilling fluids must be modelled by at least three parameters. One of the most often used models is the yield power law, also referred as the Herschel-Bulkley model. Other models have been proposed like the one from Robertson-Stiff, while other industries have used other three-parameter models such as the one from Heinz-Casson. Some studies have been made to compare the degree of agreement between different rheological models and rheometer measurements but in most cases, already published works have only used mechanical rheometers that have a limited number of speeds and precision. For this paper, we have taken measurements with a scientific rheometer in well-controlled conditions of temperature and evaporation, and for relevant shear rates that are representative to normally encountered drilling operation conditions. Care has been made to minimize the effect of thixotropy on measurements, as the shear stress response of drilling fluids depends on its shear history. Measurements have been made at different temperatures, for various drilling fluid systems (both water and oil-based), and with variable levels of solid contents. Also, the shear rate reported by the rheometer itself, is corrected to account for the fact that the rheometer estimates the wall shear rate on the assumption that the tested fluid is Newtonian. A measure of proximity between the measurements and a rheological model is defined, thereby allowing the ranking of different rheological behavior model candidates. Based on the 469 rheograms of various drilling fluids that have been analyzed, it appears that the Heinz-Casson model describes most accurately the rheological behavior of the fluid samples, followed by the model of Carreau, Herschel-Bulkley and Robertson-Stiff, in decreasing order of fidelity.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaohu Liu ◽  
Zhishu Yao ◽  
Weipei Xue ◽  
Xiang Li

To solve the difficult problems of failure of pretensioned bolt supports under high ground pressure and temperature, a new kind of anchorage agent with excellent performance is developed. First, the selection and compounding of raw materials were conducted. The new anchorage agent was obtained by modifying the PET resin by mixing with a phenolic epoxy vinyl ester resin (FX-470 resin) and adding a KH-570 silane coupling agent. Then, the viscosity, thermal stability, compressive strength under different temperatures, and anchorage capacity of the new anchorage agent were tested. Moreover, the best proportion ratio of anchorage agent by mixing resin : coarse stone powder : fine stone powder : accelerator : curing agent : KH-570 = 100 : 275 : 275 : 1 : 32.5 : 1 is obtained. The test results showed that, with the addition of a KH-570 silane coupling agent, the viscosity decreased significantly, thereby solving the difficult technical problems of pretensioned bolt supports in full-length anchorage support. Compared with the conventional anchorage agent, the compressive strength of the new anchorage agent increased by 20.4, 82.5, 118.2, and 237.5% at 10, 50, 80, and 110°C, respectively, and the anchorage capacity increased by 4.7, 8.7, 40.2, and 62.9% at 30, 50, 80, and 110°C, respectively. Finally, the enhancement in compressive strength and heat-resistant mechanism are revealed through microanalysis.


Author(s):  
Lu Zhang ◽  
Liming Che ◽  
Weibiao Zhou ◽  
Xiao Dong Chen

Abstract Agar solution has been used in industry as a “background” liquid material for the production of instant Edible Bird’s Nest products. In this work, the rheological properties of agar solution were studied, especially the effect of shear rate, agar concentration and temperature, respectively, on the apparent viscosity of the agar solution. A HAAKE rotary viscometer was used. Results indicated that the agar solution exhibited shear-thinning behavior following the power law fluid model. Its apparent viscosity increased exponentially with an increase of solid concentration, and decreased with a rise of temperature. The independence of viscosity on temperature followed Arrhenius equation. Reasonable empirical correlations between the apparent viscosity of the agar solution for different temperatures, shear rates and different concentrations are proposed respectively.


2013 ◽  
Vol 25 ◽  
pp. 174-180
Author(s):  
Rajabi Javad ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Aziz Hasyimah ◽  
Abdolali Fayyaz ◽  
...  

Micro metal injection molding has become the promising method in powder metallurgy research in order to fabricate small-scale intricate parts in an influential process and competitive cost of mass production. Stainless steel 316 L powders with powder size of 150 nm and 5 μm were mixed with a binder with a water soluble component which consisted of a major fraction of water soluble Polyethylene Glycol (PEG), a minor fraction of polymethyl-methacrylate (PMMA) and some stearic acid has been used as a surfactant. This work aims to investigate the rheological properties of a feedstock which are efficiently characterised by capillary Rheometry to measure apparent viscosities at different temperatures and shear rates. Results obtained by the varying feedstock characteristics, when viscosity decreases by increasing of shear rate at certain temperature feedstock should have a pseudoplastic behaviour. Melt viscosity of the feedstock was decreased by adding nanoscale powders. The reduced (n) values at high temperature with addition of nanoparticles indicated a possible increase in the shear-thinning behavior.


Sign in / Sign up

Export Citation Format

Share Document