scholarly journals High-Pressure-Induced Sublethal Injuries of Food Pathogens—Microscopic Assessment

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2940
Author(s):  
Justyna Nasiłowska ◽  
Aleksandra Kocot ◽  
Paulina Natalia Osuchowska ◽  
Barbara Sokołowska

High Hydrostatic Pressure (HHP) technology is considered an alternative method of food preservation. Nevertheless, the current dogma is that HHP might be insufficient to preserve food lastingly against some pathogens. Incompletely damaged cells can resuscitate under favorable conditions, and they may proliferate in food during storage. This study was undertaken to characterize the extent of sublethal injuries induced by HHP (300–500 MPa) on Escherichia coli and Listeria inncua strains. The morphological changes were evaluated using microscopy methods such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Epifluorescence Microscopy (EFM). The overall assessment of the physiological state of tested bacteria through TEM and SEM showed that the action of pressure on the structure of the bacterial membrane was almost minor or unnoticeable, beyond the L. innocua wild-type strain. However, alterations were observed in subcellular structures such as the cytoplasm and nucleoid for both L. innocua and E. coli strains. More significant changes after the HHP of internal structures were reported in the case of wild-type strains isolated from raw juice. Extreme condensation of the cytoplasm was observed, while the outline of cells was intact. The percentage ratio between alive and injured cells in the population was assessed by fluorescent microscopy. The results of HHP-treated samples showed a heterogeneous population, and red cell aggregates were observed. The percentage ratio of live and dead cells (L/D) in the L. innocua collection strain population was higher than in the case of the wild-type strain (69%/31% and 55%/45%, respectively). In turn, E. coli populations were characterized with a similar L/D ratio. Half of the cells in the populations were distinguished as visibly fluorescing red. The results obtained in this study confirmed sublethal HHP reaction on pathogens cells.

2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


2006 ◽  
Vol 50 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Daniel Criswell ◽  
Virginia L. Tobiason ◽  
J. Stephen Lodmell ◽  
D. Scott Samuels

ABSTRACT We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 × 10−6. These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 × 10−9 to 1 ×10−7 in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2000 ◽  
Vol 182 (23) ◽  
pp. 6630-6637 ◽  
Author(s):  
Chin Li ◽  
Yi Ping Tao ◽  
Lee D. Simon

ABSTRACT Transcription of the clpP-clpX operon ofEscherichia coli leads to the production of two different sizes of transcripts. In log phase, the level of the longer transcript is higher than the level of the shorter transcript. Soon after the onset of carbon starvation, the level of the shorter transcript increases significantly, and the level of the longer transcript decreases. The longer transcript consists of the entireclpP-clpX operon, whereas the shorter transcript contains the entire clpP gene but none of the clpXcoding sequence. The RpoH protein is required for the increase in the level of the shorter transcript during carbon starvation. Primer extension experiments suggest that there is increased usage of the ς32-dependent promoter of the clpP-clpXoperon within 15 min after the start of carbon starvation. Expression of the clpP-clpX operon from the promoters upstream of theclpP gene decreases to a very low level by 20 min after the onset of carbon starvation. Various pieces of evidence suggest, though they do not conclusively prove, that production of the shorter transcript may involve premature termination of the longer transcript. The half-life of the shorter transcript is much less than that of the longer transcript during carbon starvation. E. coli rpoBmutations that affect transcription termination efficiency alter the ratio of the shorter clpP-clpX transcript to the longer transcript. The E. coli rpoB3595 mutant, with an RNA polymerase that terminates transcription with lower efficiency than the wild type, accumulates a lower percentage of the shorter transcript during carbon starvation than does the isogenic wild-type strain. In contrast, the rpoB8 mutant, with an RNA polymerase that terminates transcription with higher efficiency than the wild type, produces a higher percentage of the shorter clpP-clpXtranscript when E. coli is in log phase. These and other data are consistent with the hypothesis that the shorter transcript results from premature transcription termination during production of the longer transcript.


2005 ◽  
Vol 187 (19) ◽  
pp. 6678-6682 ◽  
Author(s):  
Tokiko Yoshimura-Suzuki ◽  
Ikuko Sagami ◽  
Nao Yokota ◽  
Hirofumi Kurokawa ◽  
Toru Shimizu

ABSTRACT Heme-regulated phosphodiesterase from Escherichia coli (DOSEc) catalyzes the hydrolysis of cyclic AMP (cAMP) in vitro and is regulated by the redox state of the bound heme. Changes in the redox state result in alterations in the three-dimensional structure of the enzyme, which is then transmitted to the functional domain to switch catalysis on or off. Because DOSEc was originally cloned from E. coli genomic DNA, it has not been known whether it is actually expressed in wild-type E. coli. In addition, the turnover number of DOSEc using cAMP as a substrate is only 0.15 min−1, which is relatively low for a physiologically relevant enzyme. In the present study, we demonstrated for the first time that the DOSEc gene and protein are expressed in wild-type E. coli, especially under aerobic conditions. We also developed a DOSEc gene knockout strain (Δdos). Interestingly, the knockout of dos caused excess accumulation of intracellular cAMP (26-fold higher than in the wild-type strain) under aerobic conditions, whereas accumulation of cAMP was not observed under anaerobic conditions. We also found differences in cell morphology and growth rate between the mutant cells and the wild-type strain. The changes in the knockout strain were partially complemented by introducing an expression plasmid for dos. Thus, the present study revealed that expression of DOSEc is regulated according to environmental O2 availability at the transcriptional level and that the concentration of cAMP in cells is regulated by DOSEc expression.


2000 ◽  
Vol 46 (12) ◽  
pp. 1153-1158 ◽  
Author(s):  
Ivana Eichlerová ◽  
Katia Ruel ◽  
Ladislav Homolka ◽  
Jean-Paul Joseleau ◽  
František Nerud

A stable isolate of Pleurotus ostreatus P19 differing in some morphological and physiological characteristics from its parental wild-type strain F6 was obtained via protoplast isolation during the preparation of strains with altered ligninolytic abilities. The isolate is monokaryotic, does not form clamp-connections, and produces much higher activities of enzymes involved in lignin modification (laccase, manganese peroxidase). Cellulase activity was comparable to that of wild-type strain F6, but the xylanase activity was slightly higher in isolate P19. However, this monokaryotic derivative degrades lignin at a slightly lower rate than its parental strain F6. Electron microscopy observations of wood degradation as a function of mycelium growth were performed on three zones of birch wafers delimited according to the distance from the point of inoculation. The different stages of fungal mycelium growth showed differences in the ultrastructural patterns of the decay not only between the strains P19 and F6, but also depending on the distance from the point of inoculation. This suggests a spatio-temporally controlled secretion of enzymes along the hyphae. The enhanced ability of P19 to degrade the condensed forms of lignin in middle lamellae is correlated to its higher laccase activity.Key words: electron microscopy, ligninolytic enzymes, Pleurotus ostreatus, wood degradation.


2019 ◽  
Author(s):  
Philippe Vogeleer ◽  
Antony T. Vincent ◽  
Samuel M. Chekabab ◽  
Steve J. Charette ◽  
Alexey Novikov ◽  
...  

ABSTRACTIn open environments such as water, enterohemorrhagicEscherichia coliO157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. The phosphate-specific transport (Pst) system is the high-affinity Pi transporter. In the Δpstmutant, PhoB is constitutively activated and regulates the expression of genes from the Pho regulon. InE. coliO157:H7, the Δpstmutant, biofilm, and autoagglutination were increased. In the double-deletion mutant ΔpstΔphoB, biofilm and autoagglutination were similar to the wild-type strain, suggesting that PhoB is involved. We investigated the relationship between PhoB activation and enhanced biofilm formation by screening a transposon mutant library derived from Δpstmutant for decreased autoagglutination and biofilms mutants. Lipopolysaccharide (LPS) genes involved in the synthesis of the LPS core were identified. Transcriptomic studies indicate the influence of Pi-starvation andpstmutation on LPS biosynthetic gene expression. LPS analysis indicated that the O-antigen was deficient in the Δpstmutant. Interestingly,waaH, encoding a glycosyltransferase associated with LPS modifications inE. coliK-12, was highly expressed in the Δpstmutant ofE. coliO157:H7. Deletion ofwaaHfrom the Δpstmutant and from the wild-type strain grown in Pi-starvation conditions decreased the biofilm formation but without affecting LPS. Our findings suggest that LPS core is involved in the autoagglutination and biofilm phenotypes of the Δpstmutant and that WaaH plays a role in biofilm in response to Pi-starvation. This study highlights the importance of Pi-starvation in biofilm formation of E. coli O157:H7, which may affect its transmission and persistence.IMPORTANCEEnterohemorrhagicEscherichia coliO157:H7 is a human pathogen responsible for bloody diarrhea and renal failures. In the environment, O157:H7 can survive for prolonged periods of time under nutrient-deprived conditions. Biofilms are thought to participate in this environmental lifestyle. Previous reports have shown that the availability of extracellular inorganic phosphate (Pi) affected bacterial biofilm formation; however, nothing was known about O157:H7 biofilm formation. Our results show that O157:H7 membrane undergoes modifications upon PhoB activation leading to increased biofilm formation. A mutation in the Pst system results in reduced amount of the smooth type LPS and that this could influence the biofilm composition. This demonstrates how theE. coliO157:H7 adapts to Pi starvation increasing its ability to occupy different ecological niches.


2002 ◽  
Vol 184 (13) ◽  
pp. 3433-3441 ◽  
Author(s):  
Juana Magdalena ◽  
Abderrahman Hachani ◽  
Mustapha Chamekh ◽  
Noureddine Jouihri ◽  
Pierre Gounon ◽  
...  

ABSTRACT Type III secretion systems (TTSS) are essential virulence determinants of many gram-negative bacteria and serve, upon physical contact with target cells, to translocate bacterial proteins directly across eukaryotic cell membranes. The Shigella TTSS is encoded by the mxi/spa loci located on its virulence plasmid. By electron microscopy secretons are visualized as tripartite with an external needle, a transmembrane domain, and a cytoplasmic bulb. In the present study, we generated a Shigella spa32 mutant and studied its phenotype. The spa32 gene shows low sequence homology to Salmonella TTSS1 invJ/spaN and to flagellar fliK. The spa32 mutant, like the wild-type strain, secreted the Ipas and IpgD, which are normally secreted via the TTSS, at low levels into the growth medium. However, unlike the wild-type strain, the spa32 mutant could neither be induced to secrete the Ipas and IpgD instantaneously upon addition of Congo red nor penetrate HeLa cells in vitro. Additionally, the Spa32 protein is secreted in large amounts by the TTSS during exponential growth but not upon Congo red induction. Interestingly, electron microscopy analysis of the spa32 mutant revealed that the needle of its secretons were up to 10 times longer than those of the wild type. In addition, in the absence of induction, the spa32 mutant secreted normal levels of MxiI but a large excess of MxiH. Taken together, our data indicate that the spa32 mutant presents a novel phenotype and that the primary defect of the mutant may be its inability to regulate or control secretion of MxiH.


2000 ◽  
Vol 68 (3) ◽  
pp. 1535-1541 ◽  
Author(s):  
C. A. Ginns ◽  
M. L. Benham ◽  
L. M. Adams ◽  
K. G. Whithear ◽  
K. A. Bettelheim ◽  
...  

ABSTRACT The E3 strain of E. coli was isolated in an outbreak of respiratory disease in broiler chickens, and experimental aerosol exposure of chickens to this strain induced disease similar to that seen in the field. In order to establish whether the virulent phenotype of this strain was associated with carriage of particular plasmids, four plasmid-cured derivatives, each lacking two or more of the plasmids carried by the wild-type strain, were assessed for virulence. Virulence was found to be associated with one large plasmid, pVM01. Plasmid pVM01 was marked by introduction of the transposon TnphoA, carrying kanamycin resistance, and was then cloned by transformation of E. coli strain DH5α. The cloned plasmid was then reintroduced by conjugation into an avirulent plasmid-cured derivative of strain E3 which lacked pVM01. The conjugant was shown to be as virulent as the wild-type strain E3, establishing that this plasmid is required for virulence following aerosol exposure. This virulence plasmid conferred expression of a hydroxamate siderophore, but not colicins, on both strain E3 and strain DH5α. Carriage of this plasmid was required for strain E3 to colonize the respiratory tracts of chickens but was not necessary for colonization of the gastrointestinal tract. However, the virulence plasmid did not confer virulence, or the capacity to colonize the respiratory tract, on strain DH5α. Thus, these studies have established that infection of chickens with E. coli strain E3 by the respiratory route is dependent on carriage of a conjugative virulence plasmid, which confers the capacity to colonize specifically the respiratory tract and which also carries genes for expression of a hydroxymate siderophore. These findings will facilitate identification of the specific genes required for virulence in these pathogens.


1978 ◽  
Vol 24 (5) ◽  
pp. 629-631 ◽  
Author(s):  
La Verne Russell ◽  
Hiroshi Yamazaki

The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.


Sign in / Sign up

Export Citation Format

Share Document