scholarly journals Relationship between Structure and Biological Activity of Various Vitamin K Forms

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3136
Author(s):  
Katarzyna Bus ◽  
Arkadiusz Szterk

Vitamin K is involved many biological processes, such as the regulation of blood coagulation, prevention of vascular calcification, bone metabolism and modulation of cell proliferation. Menaquinones (MK) and phylloquinone vary in biological activity, showing different bioavailability, half-life and transport mechanisms. Vitamin K1 and MK-4 remain present in the plasma for 8–24 h, whereas long-chain menaquinones can be detected up to 96 h after administration. Geometric structure is also an important factor that conditions their properties. Cis-phylloquinone shows nearly no biological activity. An equivalent study for menaquinone is not available. The effective dose to decrease uncarboxylated osteocalcin was six times lower for MK-7 than for MK-4. Similarly, MK-7 affected blood coagulation system at dose three to four times lower than vitamin K1. Both vitamin K1 and MK-7 inhibited the decline in bone mineral density, however benefits for the occurrence of cardiovascular diseases have been observed only for long-chain menaquinones. There are currently no guidelines for the recommended doses and forms of vitamin K in the prevention of osteoporosis, atherosclerosis and other cardiovascular disorders. Due to the presence of isomers with unknown biological properties in some dietary supplements, quality and safety of that products may be questioned.

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 965 ◽  
Author(s):  
Toshiro Sato ◽  
Naoko Inaba ◽  
Takatoshi Yamashita

Vitamin K acts as a cofactor and is required for post-translational γ-carboxylation of vitamin K-dependent proteins (VKDP). The current recommended daily intake (RDI) of vitamin K in most countries has been established based on normal coagulation requirements. Vitamin K1 and menaquinone (MK)-4 has been shown to decrease osteocalcin (OC) γ-carboxylation at RDI levels. Among the several vitamin K homologs, only MK-7 (vitamin K2) can promote γ-carboxylation of extrahepatic VKDPs, OC, and the matrix Gla protein at a nutritional dose around RDI. MK-7 has higher efficacy due to its higher bioavailability and longer half-life than other vitamin K homologs. As vitamin K1, MK-4, and MK-7 have distinct bioactivities, their RDIs should be established based on their relative activities. MK-7 increases bone mineral density and promotes bone quality and strength. Collagen production, and thus, bone quality may be affected by MK-7 or MK-4 converted from MK-7. In this review, we comprehensively discuss the various properties of MK-7.


2003 ◽  
Vol 62 (4) ◽  
pp. 839-843 ◽  
Author(s):  
Susanne Bügel

Vitamin K, originally recognised as a factor required for normal blood coagulation, is now receiving more attention in relation to its role in bone metabolism. Vitamin K is a coenzyme for glutamate carboxylase, which mediates the conversion of glutamate to γ-carboxyglutamate (Gla). Gla residues attract Ca2+ and incorporate these ions into the hydroxyapatite crystals. There are at least three Gla proteins associated with bone tissue, of which osteocalcin is the most abundant and best known. Osteocalcin is the major non-collagenous protein incorporated in bone matrix during bone formation. However, approximately 30% of the newly-produced osteocalcin stays in the circulation where it may be used as an indicator of bone formation. Vitamin K deficiency results in an increase in undercarboxylated osteocalcin, a protein with low biological activity. Several studies have demonstrated that low dietary vitamin K intake is associated with low bone mineral density or increased fractures. Additionally, vitamin K supplementation has been shown to reduce undercarboxylated osteocalcin and improve the bone turnover profile. Some studies have indicated that high levels of undercarboxylated osteocalcin (as a result of low vitamin K intake?) are associated with low bone mineral density and increased hip fracture. The current dietary recommendation for vitamin K is 1 μ/kg body weight per d, based on saturation of the coagulation system. The daily dietary vitamin K intake is estimated to be in the range 124–375 μg/d in a European population. Thus, a deficiency based on the hepatic coagulation system would be unusual, but recent data suggest that the requirement in relation to bone health might be higher.


2008 ◽  
Vol 28 (S 01) ◽  
pp. S106-S106
Author(s):  
P. Westhofen ◽  
M. Watzka ◽  
M. Hass ◽  
C. Müller-Reible ◽  
D. Lütjohann ◽  
...  

1988 ◽  
Vol 60 (01) ◽  
pp. 039-043 ◽  
Author(s):  
L Mandelbrot ◽  
M Guillaumont ◽  
M Leclercq ◽  
J J Lefrère ◽  
D Gozin ◽  
...  

SummaryVitamin K status was evaluated using coagulation studies and/ or vitamin IQ assays in a total of 53 normal fetuses and 47 neonates. Second trimester fetal blood samples were obtained for prenatal diagnosis under ultrasound guidance. Endogenous vitamin K1 concentrations (determined by high performance liquid chromatography) were substantially lower than maternal levels. The mean maternal-fetal gradient was 14-fold at mid trimester and 18-fold at birth. Despite low vitamin K levels, descarboxy prothrombin, detected by a staphylocoagulase assay, was elevated in only a single fetus and a single neonate.After maternal oral supplementation with vitamin K1, cord vitamin K1 levels were boosted 30-fold at mid trimester and 60 fold at term, demonstrating placental transfer. However, these levels were substantially lower than corresponding supplemented maternal levels. Despite elevated vitamin K1 concentrations, supplemented fetuses and neonates showed no increase in total or coagulant prothrombin activity. These results suggest that the low prothrombin levels found during intrauterine life are not due to vitamin K deficiency.


1966 ◽  
Vol 15 (03/04) ◽  
pp. 519-538 ◽  
Author(s):  
J Levin ◽  
E Beck

SummaryThe role of intravascular coagulation in the production of the generalized Shwartzman phenomenon has been evaluated. The administration of endotoxin to animals prepared with Thorotrast results in activation of the coagulation mechanism with the resultant deposition of fibrinoid material in the renal glomeruli. Anticoagulation prevents alterations in the state of the coagulation system and inhibits development of the renal lesions. Platelets are not primarily involved. Platelet antiserum produces similar lesions in animals prepared with Thorotrast, but appears to do so in a manner which does not significantly involve intravascular coagulation.The production of adrenal cortical hemorrhage, comparable to that seen in the Waterhouse-Friderichsen syndrome, following the administration of endotoxin to animals that had previously received ACTH does not require intravascular coagulation and may not be a manifestation of the generalized Shwartzman phenomenon.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


1999 ◽  
Vol 64 (8) ◽  
pp. 1211-1252 ◽  
Author(s):  
Jan Hlaváček ◽  
Renáta Marcová

The first part of this review deals with the biosynthesis and a biological function of strongly vasoactive peptides named endothelins (ETs) including vasoactive intestinal contractor. Where it was useful, snake venoms sarafotoxins which are structural endothelin derivatives, were also mentioned. In the second part, an attention is paid to structural basis of the ETs biological activity, with respect to alterations of amino acid residues in the parent peptides modifying the conformation and consequently the physico-chemical and biological properties in corresponding ETs analogs. Special attention is focussed on the area of ETs receptors and their interaction with peptide and non peptide agonists and antagonists, important in designing selective inhibitors of ETs receptors potentially applicable as drugs in a medicine. A review with 182 references.


1981 ◽  
Vol 90 (5) ◽  
pp. 1387-1395 ◽  
Author(s):  
Yasuo OHNO ◽  
Hisao KATO ◽  
Takashi MORITA ◽  
Sadaaki IWANAGA ◽  
Katsumi TAKADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document