scholarly journals Chitosan Coating Inhibits the Growth of Listeria monocytogenes and Extends the Shelf Life of Vacuum-Packed Pork Loins at 4 °C

Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 155 ◽  
Author(s):  
Annalisa Serio ◽  
Clemencia Chaves-López ◽  
Giampiero Sacchetti ◽  
Chiara Rossi ◽  
Antonello Paparella

Chitosan coating is a promising method for food preservation. This study aims to fill the data gap regarding the application of chitosan (1% and 2%) on vacuum-packed fresh pork stored at 4 °C for 28 days, with particular attention on the effect on Listeria monocytogenes, inoculated as a cocktail of three strains. Chitosan at both concentrations was able to significantly reduce L. monocytogenes counts by more than 1.5 Log CFU/g with respect to control; moreover, it inhibited the growth of mesophilic bacteria and was particularly effective on lactic acid bacteria and yeasts. The beneficial effects on shelf life were demonstrated by both panel test and pH evolution. In fact, panellists did not detect any sensory difference between samples treated with 1% chitosan and control up to 14 days of storage, while after 28 days, a pungent flesh odour was perceived in control samples only. Interestingly, at aw values of fresh meat (0.984), the chitosan coating exhibited a liquid behaviour, with a dynamic viscosity of 229.4 ± 4.2 mPa/s. Chitosan coating applied on vacuum-packed pork loins contained L. monocytogenes growth and improved the microbiological characteristics of the product, with a beneficial effect on product shelf life.

2019 ◽  
Vol 70 (2) ◽  
pp. 1495
Author(s):  
D. ANTONIADOU ◽  
A. GOVARIS ◽  
I. AMBROSIADIS ◽  
D. SERGELIDIS

Edible chitosan coating on the surface of ready-to-eat (RTE) bovine meatballs was evaluated for its effect on their shelf life and the control of Listeria monocytogenes at 5 °C. L. monocytogenes was inoculated onto the surface of RTE bovine meatballs with and without edible chitosan coating. The samples were stored at 5 °C. Total aerobic viable count (TVC) and the bacterial counts of L. monocytogenes, lactic acid bacteria and Enterobacteriaceae were determined on days 0,1,7,14,21 and 28. The sensory characteristics were also evaluated at the same time spots by semi trained panelists. The results of the microbiological analysis depicted that the use of edible chitosan membranes reduced all of the microbial populations that were enumerated, and retarded their growth leading to the conclusion that they can prolong the shelf life of these products by 14 days. Moreover, the population of the inoculated L. monocytogenes was about 2 log CFU/g lower in the meatballs coated with chitosan, indicating an inhibitory effect of chitosan in the growth of L. monocytogenes. The sensory analysis showed that the samples coated with chitosan were satisfactorily accepted by the panelists even at day 28, in contrast to the samples without chitosan (control samples) which were unacceptable at day 14. These results indicate that edible chitosan coatings represent a potential agent in controlling L. monocytogenes on the surface of RTE meatballs as well as other RTE meat products, prolonging their shelf life without affecting their sensory characteristics.


2018 ◽  
Vol 67 ◽  
pp. 16-23
Author(s):  
Nehar Parvin ◽  
M.A. Kader ◽  
Roksana Huque ◽  
M.E. Molla ◽  
Mubarak A. Khan

The effect of irradiated chitosan coating on post-harvest preservation of tomato was observed in this study. Irradiated chitosan (40 kGy) solution of various concentrations (500, 750, 1000, 1500 and 2000 ppm) were applied on post-harvest preservation of tomato. Both chitosan treated and untreated (control) tomato were stored at room temperature in open and zip bag conditions. The effect of coating of various chitosan solutions on tomato were observed during storage period. The percentage of weight loss and spoilage rate of the preserved and control tomato samples were investigated. Several parameters (such as total bacteria count, total mold count, moisture, ash, acidity, vitamin C, sugar, protein and fat) were analyzed for irradiated chitosan coated tomato in open condition after 3-weeks storage period. In addition, the same parameters were also analyzed for control tomato. Considering all parameters, the results revealed that 1500 ppm chitosan solution performed better in extending the shelf- life of tomato as compared to the control and other treated samples. Thus, this observation recommend that irradiated chitosan coating have the potential to be used as natural preservative to maintain quality and extending shelf-life of tomato.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
H. E. Ramírez-Guerra ◽  
F. J. Castillo-Yañez ◽  
E. A. Montaño-Cota ◽  
S. Ruíz-Cruz ◽  
E. Márquez-Ríos ◽  
...  

The products of fishing are highly perishable foods. Thus, it is necessary to seek viable alternatives that help to preserve product freshness and quality and to increase its shelf life. One of these alternatives is the use of extracts with antimicrobial activity obtained from plants, such as tomato, which has been observed to present compounds with antimicrobial activity. The objective of this work was to determine the effect of an extract obtained from the tomato plant and incorporated into an edible chitosan coating on the quality and shelf life of the sierra fish fillet stored on ice for 15 days. For the latter, an extract was prepared with dehydrated tomato plants, which was incorporated by immersion alone or in combination with an edible chitosan-based coating in sierra fish fillets. The following treatments were applied: C (Chitosan), TPE (Tomato Plant Extract), TPE-C (TPE-Chitosan), and control (without chitosan and extract). Color, pH, WHC, ATP-related compounds, and K value were monitored during 15 days of storage on ice. Likewise, the total count of mesophiles was determined. The results indicated that treatments C, TPE, and TPE-C were significantly different (p<0.05) from lot control in terms of the concentration of ATP-related compounds, K value, pH, and total mesophilic count. We concluded that application of the extract alone or in combination with chitosan allows for the improvement of the quality and shelf life of the sierra fish fillet.


1970 ◽  
pp. 01-04
Author(s):  
Esameldin B. M. Kabbashi, Ghada H. Abdelrahman and Nawal A. Abdlerahman

Guava (Psidium guajava L.) is a lovely tropical and subtropical fruit that originates in Mexico, Central America, and then taken to other distant and near parts around the world. In Sudan this popular fruit is produced in orchards and household and is so profitable but yet attacked by a lot of fruit fly species of the Genera Ceratitis and Bactrocera and the result is a loss of more than 70%. This research aimed at evaluating the effect of Gum Arabic coating (GAC) in extending the shelf life of guava fruit and disinfesting it from these notorious pests. Guava fruits from Kadaro orchards, Khartoum North, were tested using seven concentrations of Gum Arabic solutions. The results reflect that 1: 4 (25%) and 1: 8 (12.5%) (GA: water) concentrations attained 56 and 40% disinfestation, respectively whereas the other lower concentrations effected corresponding results in a range from 20 – 08%. The reduction in maggots per test fruit reached upto 188% as compared to the control.  The highest concentrations (1: 4 & 1: 8) effected a sustainability of 52% in fruit firmness (FF) with an average of medium (3) FF compared to soft FF (4) in the control. The corresponding results in other lower concentrations (1: 16; 1: 32; 1: 64; 1: 72 & 1: 96) were 36, 24, 24, 20 and 16%, respectively. In addition to an average FF of 4 (soft) for all these concentrations and 5 (very soft) for all the corresponding controls. Nevertheless, the sustainability of fruit color (FC) effected by the test concentrations was 52, 44, 24, 22, 24, 20, and 24%, respectively. Regarding these results, the two highest test concentrations effected a sizeable disinfestation and control of fruit flies and a good extension of shelf life of guava in Khartoum State. These findings support using this treatment as an effective IPM tool to extend guava fruit shelf life and upgrading its postharvest quality.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 716
Author(s):  
Milad Yaghoubi ◽  
Ali Ayaseh ◽  
Kazem Alirezalu ◽  
Zabihollah Nemati ◽  
Mirian Pateiro ◽  
...  

The present study was conducted to assess the impact of chitosan coating (1%) containing Artemisia fragrans essential oil (500, 1000, and 1500 ppm) as antioxidant and antimicrobial agent on the quality properties and shelf life of chicken fillets during refrigerated storage. After packaging meat samples, physicochemical, microbiological, and organoleptic attributes were evaluated at 0, 3, 6, 9, and 12 days at 4 °C. The results revealed that applied chitosan (CH) coating in combination with Artemisia fragrans essential oils (AFEOs) had no significant (p < 0.05) effects on proximate composition among treatments. The results showed that the incorporation of AFEOs into CH coating significantly reduced (p < 0.05) pH, thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N), especially for 1% CH coating + 1500 ppm AFEOs, with values at the end of storage of 5.58, 1.61, and 2.53, respectively. The coated samples also displayed higher phenolic compounds than those obtained by uncoated samples. Coated chicken meat had, significantly (p < 0.05), the highest inhibitory effects against microbial growth. The counts of TVC (total viable counts), coliforms, molds, and yeasts were significantly lower (p < 0.05) in 1% CH coating + 1500 ppm AFEOs fillets (5.32, 3.87, and 4.27 Log CFU/g, respectively) at day 12. Organoleptic attributes of coated samples also showed the highest overall acceptability scores than uncoated ones. Therefore, the incorporation of AFEOs into CH coating could be effectively used for improving stability and shelf life of chicken fillets during refrigerated storage.


Sign in / Sign up

Export Citation Format

Share Document