scholarly journals Effect of the Roasting Conditions on the Physicochemical, Quality and Sensory Attributes of Coffee-Like Powder and Brew from Defatted Palm Date Seeds

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Mohammad Fikry ◽  
Yus Yusof ◽  
Alhussein Al-Awaadh ◽  
Russly Rahman ◽  
Nyuk Chin ◽  
...  

Developing a bioactive brew is a novel track for revalorization of palm date byproducts. The effect of roasting temperature (160, 180 and 200 °C ) and roasting time (10, 20 and 30 min) on the hardness of the roasted date seeds, moisture content of the defatted roasted date seed powder (DRDSP), bulk density of the DRDSP, color parameters of DRDSP, quality attributes (extraction yield, pH and browning index), the chemical properties (antioxidants and total phenolic content) and the sensory attributes (color, aroma, taste and overall preference) of the brew prepared from DRDSP was studied. The physicochemical, quality, and sensory attributes were found to be significantly influenced by the roasting temperature and time. Additionally, the models proposed could satisfactorily describe the changes in the different properties during the roasting process. The optimum conditions of the roasting process obtained using the superimposed contour plot were 199.9 °C and 21.5 min. In the longer term, the results of this study would be beneficial for the manufacturers of the date seeds powder and brew.

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 322 ◽  
Author(s):  
Mircea Oroian ◽  
Florin Ursachi ◽  
Florina Dranca

The aim of this study was to evaluate the extraction efficiency of polyphenols from crude pollen by an ultrasonic process. Prior to the polyphenols extraction, the crude pollen was defatted. The extraction from defatted pollen was carried out by varying four extraction parameters: ultrasonic amplitude (20%, 60% and 100%), solid/liquid ratio (10 g/L, 20 g/L and 30 g/L), temperature (35, 50 and 65 °C) and time (10, 20 and 30 min). The extracts were analyzed in terms of extraction yield (%), total phenolic content (TPC) and total flavones content (TFC). The extracted oil was analyzed in terms of fatty acids composition; myristic acid (159.1 µg × g−1) and cis-14-pentadecenoic acid (106.6 µg·g−1) were found in the highest amount in the pollen oil. The optimum conditions of extraction were determined and were, as follows: 100% amplitude of ultrasonic treatment, 30 g/L solid/liquid ratio, 40.85 °C and 14.30 min, which led to the extraction of 366.1 mg GAE/L of TPC and 592.2 mg QE/g of TFC, and also to an extraction yield of 1.92%.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Kyeom Kim ◽  
Eui-Cheol Shin ◽  
Ho-Jeong Lim ◽  
Soo Jung Choi ◽  
Cho Rong Kim ◽  
...  

Few studies have investigatedSeomaemugwort (a Korean native mugwort variety ofArtemisia argyiH. Lév. & Vaniot), exclusively cultivated in the southern Korean peninsula, and the possibility of its use as a food resource. In the present study, we compared the nutritional and chemical properties as well as sensory attributes ofSeomaemugwort and the commonly consumed speciesArtemisia princepsPamp. In comparison withA. princeps, Seomaemugwort had higher contents of polyunsaturated fatty acids, total phenolic compounds, vitamin C, and essential amino acids. In addition,Seomaemugwort had better radical scavenging activity and more diverse volatile compounds thanA. princepsas well as favorable sensory attributes when consumed as tea. Given that scant information is available regarding theSeomaemugwort and its biological, chemical, and sensory characteristics, the results herein may provide important characterization data for further industrial and research applications of this mugwort variety.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1516
Author(s):  
Rut Fernández-Marín ◽  
Susana C. M. Fernandes ◽  
María A. Andrés ◽  
Jalel Labidi

Curcuma root (Curcuma longa L.) is a very important plant in gastronomy and medicine for its unique antiseptic, anti-inflammatory, antimicrobial and antioxidant properties. Conventional methods for the extraction of curcuma oil require long extraction times and high temperatures that can degrade the active substances. Therefore, the objectives of the present study were: (i) first, to optimize the extraction yield of curcuma oil by applying a Box-Behnken experimental design using surface response methodology to the microwave-assisted extraction (MAE) technique (the independent variables studied were reaction time (10–30 min), microwave power (150–200 W) and curcuma powder/ethanol ratio (1:5–1:20; w/v); and, (ii) second, to assess the total phenolic content (TPC) and their antioxidant activity of the oil (at the optimum conditions point) and compare with the conventional Soxhlet technique. The optimum conditions for the MAE were found to be 29.99 min, 160 W and 1:20 w/v to obtain an optimum yield of 10.32%. Interestingly, the oil extracted by microwave-assisted extraction showed higher TPC and better antioxidant properties than the oil extracted with conventional Soxhlet technique. Thus, it was demonstrated that the method applied for extraction influences the final properties of the extracted Curcuma longa L. oil.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (04) ◽  
pp. 20-28 ◽  
Author(s):  
Sulaiman M. Alnasser ◽  

The current study reports the antioxidant activity of Ocimum basilicum. Central composite design (CCD) was used to study the effect of variables on the extraction using magnetic stirrer (MST). Three independent variables including temperature, extraction speed, and extraction time were studied that optimize particular responses of total phenolic content, ferric reducing antioxidant power (FRAP), and DPPH free radical scavenging activity. The effect of the extraction temperature on extraction process was investigated in the range from 26.3oC to 93.6oC, extraction time, from 1 to 30 h, and extraction speed, in the range from 263 to 936 rpm. The extraction yield was significantly (P < 0.05) affected by all the variables. Temperature and extraction speed were found to have a marked effect while the extraction time was found to have possible minor effects. Graphical optimization determined the optimum conditions for the extraction. The optimum condition predicted an extraction yield of 20.49g/100g at 75.33oC for five hours at 73 rpm. Optimum conditions were determined to obtain highest extraction yield. Results showed that water/seed ratio was the most significant parameter, followed by temperature and time. All quantitative modeling and response surface methodology recommended that extraction temperature and time were the most effective parameters of MST process. However, extraction time was found out to be an insignificant factor in MST extraction of antioxidant and total phenolic compounds of O. basilicum.


2018 ◽  
Author(s):  
Nam Kyong-il ◽  
KIM rak-chon ◽  
Kang chang-hyok ◽  
Lee song-nam ◽  
Ryom sok-hun

In order to extract lycopene more effectively, this experiment focused on the optimization of ethanol pretreatment method to study the effects of ethanol treatment on the extraction rate of lycopene and its antioxidant activity. The test results show that 2 times ethanol treatment is very effective for improving lycopene yield. The optimum conditions of ethanol treatment are temperature 50 ℃, treatment time 1 time 2h, 2 times 2h, solid to liquid ratio is 1:12. The lycopene yield can be reached 20mg / 100g above.


2018 ◽  
Vol 69 (8) ◽  
pp. 1976-1979
Author(s):  
Ioana Asofiei ◽  
Ioan Calinescu ◽  
Adina Ionuta Gavrila ◽  
Daniel Ighigeanu ◽  
Diana Martin

It was designed and built a laboratory experimental installation (LEI) for the microwave pretreatment of vegetable materials. To study the influence of microwave pretreatment on the total phenolic content (TPC), a conventional extraction of polyphenols from treated and untreated fresh sea buckthorn leaves was performed. For short extraction times, the amount of phenolic compounds was higher for the extracts obtained from treated leaves, but a long pretreatment time (28 s) led to a decrease in TPC. The qualitative analysis showed that the chemical composition is not affected by the microwave pretreatment.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986290 ◽  
Author(s):  
Massimo Tacchini ◽  
Ilaria Burlini ◽  
Immacolata Maresca ◽  
Alessandro Grandini ◽  
Tatiana Bernardi ◽  
...  

Vitis vinifera L. leaves from pruning are by-products of the wine industry and represent an important source of secondary raw material, thanks to their polyphenols content. Optimization of the extraction processes is a key factor for their valorization, and Design of Experiment (DOE) could be a tool to obtain the most performing extract in terms of polyphenols quality/quantity and bioactivity. Vitis vinifera Lambrusco leaves were subjected to ultrasound-assisted extractions guided by a 23 factorial design. Three independent parameters (% solvent, time of extraction, and solvent:solid ratio) were considered to evaluate the extraction process by analyzing the extraction yield, the total phenolic content (Folin-Ciocalteu assay), and the antioxidant capacity (DPPH assay). Moreover, the content of the main molecules was identified and quantified by reversed-phase high-performance liquid chromatography coupled with diode array detection and mass spectrometry. The DOE highlighted the best extraction conditions that showed slight changes considering the different evaluating parameters. The highest extraction yield was obtained by extraction with 100% water, 60 minutes of extraction time, and 30:1 solvent:solid ratio, but it was neither the richest in polyphenols nor antioxidant capacity. The latter 2 characteristics were associated with the extraction performed using 50% ethanol, 35 minutes of extraction time, and a 20:1 solvent:solid ratio. That extract also exhibited the highest quantity of flavonols.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Mahdis Mosayebi ◽  
Mahdi Kashaninejad ◽  
Leila Najafian

Roasting sunflower kernels is a key process in production of nuts. In this study, the effect of roasting conditions, including hot air temperature (120–160°C), infrared (IR) power (400–600 W) and roasting time (3–10 min) on energy and specific energy consumption, color parameters (L∗, a∗, b∗, ΔE, BI, SI, WI, and h°), texture, moisture content, chemical properties (pH and total phenolic contents, peroxide value (PV), and sensory properties of sunflower kernel were investigated. In addition, the best models for the responses were obtained, and the proper roasting conditions were determined using response surface methodology (RSM). A quadratic model was proposed for color change (L∗, ΔE, SI, and WI), moisture and total phenol contents, linear relation for a∗, b∗, h°, and 2FI for BI, texture, PV, and pH. Roasting at 425.7 W IR power and 124.3°C for 3.7 min was found to be convenient or proper roasting conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Malek Ennaifer ◽  
Taroub Bouzaiene ◽  
Moncef Chouaibi ◽  
Moktar Hamdi

Background. The decoction of Pelargonium graveolens yields an antioxidant-rich extract and a water-soluble polysaccharide. This study aims (1) to investigate the effect of process parameters (extraction time and temperature) on the antioxidant activity of the decoction and the extraction yield of CPGP by response methodology and (2) to study the chemical properties of the optimized decoction and rheological properties of the corresponding extracted polysaccharide. Results. The antioxidant-rich decoction contained about 19.76 ± 0.41 mg RE/g DM of flavonoids and 5.31 ± 0.56 mg CE/gDM of condensed tannins. The crude Pelargonium graveolens polysaccharide (CPGP) contained 87.27 % of sugar. Furthermore, the CPGP solutions (0.5%, 1%, and 2%) exhibited shear-thinning or pseudoplastic flow behavior. A central composite design (CDD) was applied to assess the effects of temperature and time on the antioxidant activity of the decoction, on the one hand, and on water-soluble polysaccharide yield, on the other. The decoction optimization of Pelargonium graveolens aimed to use less energy (93°C for 11 minutes) leading to the highest values of decoction phenolic content (33.01 ±0.49 mg GAE/gDM) and DPPH scavenging activity (136.10 ± 0.62 mg TXE/gDM) and the highest values of CPGP yield (6.97%). Conclusion. The obtained results suggest that the CPGP rheological characteristics are suitable for applications in many industries, especially food. The values of optimal conditions showed that Pelargonium graveolens decoction operation could have multiple uses, especially for consuming less energy.


Sign in / Sign up

Export Citation Format

Share Document