scholarly journals Total, Neutral, and Polar Lipids of Brewing Ingredients, By-Products and Beer: Evaluation of Antithrombotic Activities

Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 171 ◽  
Author(s):  
Ronan Lordan ◽  
Eoin O’Keeffe ◽  
Alexandros Tsoupras ◽  
Ioannis Zabetakis

The in vitro antithrombotic properties of polar lipid constituents of malted grain (MG), pelleted hops (PH), brewer’s spent grain (BSG), spent hops (SH), wort, and bottled beer from the same production line were assessed in human platelets. The total lipids (TL) were extracted according to the Bligh and Dyer method and further separated into the total neutral lipids (TNL) and total polar lipids (TPL) extracts by counter-current distribution. The TL, TNL, and TPL extracts of all samples were assessed for their ability to inhibit platelet-activating factor (PAF) and thrombin-induced human platelet aggregation. The raw materials, by-products, wort, and beer lipid extracts all exhibited antithrombotic properties against PAF and thrombin. However, the beer TPL exhibited the lowest IC50 values against PAF-induced (7.8 ± 3.9 µg) and thrombin-induced (4.3 ± 3.0 µg) platelet aggregation indicating that these polar lipids were the most antithrombotic. The lipid extracts tended to be more bioactive against the thrombin pathway. The fatty acid content of all the TPL extracts were assessed using GC-MS. The fatty acid composition of the most bioactive TPL extracts, the wort and the beer, shared similar fatty acid profiles. Indeed, it was noted that fermentation seems to play a role in increasing the antithrombotic properties of polar lipids against PAF and thrombin by moderately altering the polar lipid fatty acid composition. Furthermore, the use of brewing by-products as a source of functional cardioprotective lipids warrants further investigation and valorisation.

HortScience ◽  
1990 ◽  
Vol 25 (10) ◽  
pp. 1262-1264 ◽  
Author(s):  
Charles F. Forney

Polar lipids were extracted from immature through overripe `Honey Dew' muskmelons (Cucumis melo L.) that were exposed to high or low levels of solar radiation. Fatty acid composition of the polar lipids changed and the percentage of unsaturated fatty acids increased as fruit ripened. The percentage of monounsaturated fatty acids palmitoleic and oleic acid as a percent of total fatty acids increased from 8% in melons of minimum maturity to >50% in overripe melons. Also, the ratio of unsaturated to saturated fatty acids increased from 2.2 to 5.0. Total polar lipid fatty acid compostion from middle mesocarp tissue (flesh) did not change as much during ripening as the polar lipid composition from the epidermis (peel). Peel tissue from the top of melons relative to the ground had unsaturation ratios of C18 fatty acids and C16 fatty acids 33% and 62% greater, respectively, than peel from the bottom of the melon. Melons of minimum maturity exposed to solar radiation had significantly more unsaturated C18 fatty acids than shaded melons. Increase in the percentage of unsaturated polar lipid fatty acids in `Honey Dew' melons may relate to increases in chilling tolerance reported to occur with ripening and solar exposure.


2004 ◽  
Vol 10 (1) ◽  
pp. 29-34 ◽  
Author(s):  
P. Sans ◽  
M. J. Andrade ◽  
S. Ventanas ◽  
J. Ruiz

Chemical parameters involved in technological meat quality for dry cured processing of Gascon pigs were studied in longissimus dorsi (LD) and biceps femoris (BF) muscles. Muscles from Gascon pigs showed 2.60 and 2.84% of intramuscular fat content, 23.64 and 22.14% protein content and 1.34 and 4.63mg of myoglobin per gram of muscle (respectively LD and BF). Intramuscular fat (IMF) and myoglobin levels were higher than those reported for commercial pigs, but lower than those previously found in Iberian pigs. A similar situation was detected in the fatty acid composition of neutral and polar lipids of both muscles. Thus, monounsaturated fatty acids (MUFA) in neutral lipids of Gascon pig muscles (LD and BF respectively) were 58.27 and 51.98%, while polyunsaturated fatty acids (PUFA) levels were 5.61 and 14.13% respectively; values similar to those found in Iberian pigs and quite different to usual values in commercial pig breeds. The same trend was found in polar lipids. Both muscles showed a low susceptibility to induced lipid oxidation, in agreement with their fatty acid composition. These results pointed out that meat from pigs of the Gascon breed showed optimal characteristics for dry cured processing.


1985 ◽  
Vol 31 (4) ◽  
pp. 361-366 ◽  
Author(s):  
J. A. Ordóñez ◽  
L. de la Hoz ◽  
J. I. Azcona ◽  
B. Sanz

The effect of growth temperature on the lipid and fatty acid composition of Streptococcus faecium has been studied. No differences in the qualitative composition of S. faecium lipids were observed. In all isolated fractions (neutral lipids, glycolipids, and phospholipids plus other polar lipids), the major fatty acids were palmitic (C-16:0), palmitoleic (C-16:1), octadecenoic (C-18:1), and cyclopropane (C-19:0). Changes in the fatty acid composition of the different fractions were observed which depended on growth temperature; the most significant one was the decrease of octadecenoic acid and the increase of palmitic acid in glycolipids and polar lipids as the temperature increased. The level of cyclopropane C-19:0 was approximately eightfold lower at 8 °C than at the other temperatures tested (20, 30, and 45 °C).


1985 ◽  
Vol 54 (03) ◽  
pp. 563-569 ◽  
Author(s):  
M K Salo ◽  
E Vartiainen ◽  
P Puska ◽  
T Nikkari

SummaryPlatelet aggregation and its relation to fatty acid composition of platelets, plasma and adipose tissue was determined in 196 randomly selected, free-living, 40-49-year-old men in two regions of Finland (east and southwest) with a nearly twofold difference in the IHD rate.There were no significant east-southwest differences in platelet aggregation induced with ADP, thrombin or epinephrine. ADP-induced platelet secondary aggregation showed significant negative associations with all C20-C22 ω3-fatty acids in platelets (r = -0.26 - -0.40) and with the platelet 20: 5ω3/20: 4ω 6 and ω3/ ω6 ratios, but significant positive correlations with the contents of 18:2 in adipose tissue (r = 0.20) and plasma triglycerides (TG) (r = 0.29). Epinephrine-induced aggregation correlated negatively with 20: 5ω 3 in plasma cholesteryl esters (CE) (r = -0.23) and TG (r = -0.29), and positively with the total percentage of saturated fatty acids in platelets (r = 0.33), but had no significant correlations with any of the ω6-fatty acids. Thrombin-induced aggregation correlated negatively with the ω3/6ω ratio in adipose tissue (r = -0.25) and the 20: 3ω6/20: 4ω 6 ratio in plasma CE (r = -0.27) and free fatty acids (FFA) (r = -0.23), and positively with adipose tissue 18:2 (r = 0.23) and 20:4ω6 (r = 0.22) in plasma phospholipids (PL).The percentages of prostanoid precursors in platelet lipids, i. e. 20: 3ω 6, 20: 4ω 6 and 20 :5ω 3, correlated best with the same fatty acids in plasma CE (r = 0.32 - 0.77) and PL (r = 0.28 - 0.74). Platelet 20: 5ω 3 had highly significant negative correlations with the percentage of 18:2 in adipose tissue and all plasma lipid fractions (r = -0.35 - -0.44).These results suggest that, among a free-living population, relatively small changes in the fatty acid composition of plasma and platelets may be reflected in significant differences in platelet aggregation, and that an increase in linoleate-rich vegetable fat in the diet may not affect platelet function favourably unless it is accompanied by an adequate supply of ω3 fatty acids.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Feng Lingran ◽  
Wang Qiang ◽  
Yu Xiaobin ◽  
Fred Kwame

Abstract Exogenous lipids serving as stimulators to improve lycopene production in Blakeslea trispora have been widely reported. However, the selection basis of exogenous lipids and their effects on intracellular lipids are not very clear. In this study, five plant oils with different fatty acid compositions were selected to investigate their effects on lycopene production, fatty acid composition and the desaturation degree of intracellular lipids. Among the oils, soybean oil, with a fatty acid composition similar to that of mycelium, exhibited the best stimulating effect on lycopene formation (improvement of 82.1%). The plant oils enhanced the total content of intracellular lipids and the desaturation degree of reserve lipids due to the alteration of fatty acid composition, especially in neutral lipids. Lycopene production was increased with the improved desaturation degree of intracellular lipids, which may be attributed to the enhancement of storage capacity for lycopene in storage lipid, thus reducing the feedback regulation of free lycopene. In addition, the increase of the desaturation degree of reserve lipids through temperature-changing fermentation also enhanced lycopene production. The present study could serve as a basis for a better understanding of the relationship between the fatty acid composition of reserve lipids and lycopene production.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 941
Author(s):  
Ewa Szpunar-Krok ◽  
Anna Wondołowska-Grabowska ◽  
Dorota Bobrecka-Jamro ◽  
Marta Jańczak-Pieniążek ◽  
Andrzej Kotecki ◽  
...  

Soybean is a valuable protein and oilseed crop ranked among the most significant of the major crops. Field experiments were carried out in 2016–2019 in South-East Poland. The influence of soybean cultivars (Aldana, Annushka), nitrogen fertilizer (0, 30, 60 kg∙ha−1 N) and inoculation with B. japonicum (control, HiStick® Soy, Nitragina) on the content of fatty acids (FA) in soybean seeds was investigated in a three-factorial experiment. This study confirms the genetic determinants of fatty acid composition in soybean seeds and their differential accumulation levels for C16:0, C16:1, C18:1n9, C18:2, C18:3, and C20:0 as well saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Increasing the rate from 30 to 60 kg ha−1 N did not produce the expected changes, suggesting the use of only a “starter” rate of 30 kg ha−1 N. Inoculation of soybean seeds with a strain of Bradyrhizobium japonicum (HiStick® Soy, BASF, Littlehampton, UK and Nitragina, Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy, Poland) is recommended as it will cause a decrease in SFA and C16:0 acid levels. This is considered nutritionally beneficial as its contribution to total fatty acids determines the hypercholesterolemic index, and it is the third most accumulated fatty acid in soybean seeds. The interaction of cultivars and inoculation formulation on fatty acid content of soybean seeds was demonstrated. An increase in the value of C16:0 content resulted in a decrease in the accumulation of C18:1, C18:2, and C18:3 acids. The content of each decreased by almost one unit for every 1% increase in C16:0 content. The dominant effect of weather conditions on the FA profile and C18:2n6/C18:3n3 ratio was demonstrated. This suggests a need for further evaluation of the genetic progress of soybean cultivars with respect to fatty acid composition and content under varying habitat conditions.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 105
Author(s):  
Amirah Yuslan ◽  
Sharifah Najuwa ◽  
Atsushi Hagiwara ◽  
Mazlan A. Ghaffar ◽  
Hidayu Suhaimi ◽  
...  

Salinity is a known factor in shaping population dynamics and community structure through direct and indirect effects on aquatic ecosystems. Salinity changes further influence food webs through competition and predation. The responses of Moina macrocopa (Cladocera) collected from Setiu Wetland lagoon (Terengganu) was evaluated through manipulative laboratory experiments to understand the ability of M. macrocopa to tolerate high salinity stress. Specifically, the fatty acid composition, growth, survival, and reproduction of this cladocerans species was examined. Sodium chloride (NaCl) as used in the treatments water with the concentration 0, 4, 6, 8, 12, and 15 salinity. Fatty acid levels were determined using Gas Chromatography and Mass Spectrophotometry (GC-MS). The results indicated that optimal conditions produced the highest fatty acid content, especially the polyunsaturated fatty acid content, such as EPA (eicosapentaenoic acid), ALA (alpha-linoleic acid), ARA (arachidonic acid), and DHA (docosahexaenoic acid). Furthermore, M. macrocopa survival was best at salinity 0, with a percentage of 98%, whereas the opposite occurred at salinity 15, with approximately 20% of viable animals surviving. Besides, M. macrocopa also showed the highest reproduction rate at salinity 0 (e.g., average initial age of reproduction, 4.33 ± 0.58 days) compared with other salinities level. Interestingly, the difference in growth at different salinities was not evident, an unusual finding when considering adverse effects such as osmoregulation pressure on the organism. Based on the results, we conclude that M. macrocopa can only tolerate salinity below salinity 8 and cannot withstand stressful environmental conditions associated with salinities above 8.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 196
Author(s):  
Elisa Varona ◽  
Alba Tres ◽  
Magdalena Rafecas ◽  
Stefania Vichi ◽  
Ana C. Barroeta ◽  
...  

Acid oils (AO) and fatty acid distillates (FAD) are oil refining by-products rich in free fatty acids. The objective of this study is their characterization and the identification of their sources of variability so that they can be standardized to improve their use as feed ingredients. Samples (n=92) were collected from the Spanish market and the MIU value (sum of moisture, insoluble impurities, and unsaponifiable matter), lipid classes, fatty acid composition, and tocol content were analyzed. Their composition was highly variable even between batches from the same producer. As FAD originated from a distillation step, they showed higher free fatty acid amounts (82.5 vs 57.0 g/100 g, median values), whereas AO maintained higher proportions of moisture, polymers, tri-, di-, and monoacylglycerols. Overall, the MIU value was higher in AO (2.60–18.50 g/100 g in AO vs 0.63-10.44 g/100 g in FAD), with most of the contents of insoluble impurities being higher than those in the guidelines. Tocol and fatty acid composition were influenced by the crude oil’s botanical origin. The calculated dietary energy values were, in general, higher for AO and decreased when a MIU correction factor was applied. The analytical control and standardization of these by-products is of the outmost importance to revalorize them as feed ingredients.


Sign in / Sign up

Export Citation Format

Share Document