scholarly journals Sapogenol is a Major Microbial Metabolite in Human Plasma Associated with High Protein Soy-Based Diets: The Relevance for Functional Food Formulations

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Madalina Neacsu ◽  
Vassilios Raikos ◽  
Yara Benavides-Paz ◽  
Sylvia H. Duncan ◽  
Gary J. Duncan ◽  
...  

Legumes are a source of health-promoting macro- and micronutrients, but also contain numerous phytochemicals with useful biological activities, an example of which are saponins. Epidemiological studies suggest that saponins may play a role in protection from cancer and benefit human health by lowering cholesterol. Therefore, they could represent good candidates for specialised functional foods. Following the consumption of a soya-rich high-protein weight-loss diet (SOYA HP WL), the concentrations of Soyasaponin I (SSI) and soyasapogenol B (SSB) were determined in faecal samples from human volunteers (n = 10) and found to be between 1.4 and 17.5 mg per 100 g fresh faecal sample. SSB was the major metabolite identified in volunteers’ plasma (n = 10) after consumption of the soya test meal (SOYA MEAL); the postprandial (3 h after meal) plasma concentration for SSB varied between 48.5 ng/mL to 103.2 ng/mL. The metabolism of SSI by the gut microbiota (in vitro) was also confirmed. This study shows that the main systemic metabolites of soyasaponin are absorbed from the gut and that they are bioavailable in plasma predominantly as conjugates of sapogenol. The metabolism and bioavailability of biologically active molecules represent key information necessary for the efficient development of functional foods.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 883
Author(s):  
Mebeaselassie Andargie ◽  
Maria Vinas ◽  
Anna Rathgeb ◽  
Evelyn Möller ◽  
Petr Karlovsky

Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.


2021 ◽  
Vol 22 (6) ◽  
pp. 3018
Author(s):  
Biane Philadelpho ◽  
Victória Souza ◽  
Fabiani Souza ◽  
Johnnie Santos ◽  
Fabiana Batista ◽  
...  

Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean β-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56–54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean β-vignin protein, but also for a possible application as nutraceutical molecule.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


1970 ◽  
Vol 48 (5) ◽  
pp. 291-298
Author(s):  
J. Pierluissi ◽  
J. Campbell ◽  
K. S. Rastogi ◽  
G. R. Green ◽  
V. Lazdins

The relation of insulinase activity to the biological effect of insulin on isolated tissue was studied. Rat diaphragm in vitro caused the rapid disappearance of immunoreactive insulin (IRI) in physiological concentrations. IRI loss at time intervals was exponential. The fractional rate of loss of IRI was therefore independent of IRI concentration and was also approximately constant per milligram of tissue, the value being 0.0216%/mg∙mm. The value of the Michaelis constant (Km), obtained from initial velocities at five initial concentrations of IRI, was 1.85 × 10−8M, and of the maximal velocity (Vmax) was 2.32 × 10−11 mole/g∙min, based on insulin dimer. The addition of an insulinase inhibitor (a partial hydrolysate of insulin) to hemidiaphragm in vitro reduced the fractional rate of IRI loss by 60%. The increase in Km, without appreciable change in Vmax, indicated that the inhibition was competitive. The IRI preserved by means of the inhibitor was biologically active, since it increased the glycogen accumulation and the incorporation of 14C-U-glucose into glycogen in a second, fresh hemidiaphragm. In single incubation of hemidiaphragm with insulin, the gain in glycogen was correlated with the amount of inhibitor. The biological effect of insulin on diaphragm in vitro was therefore limited by tissue insulinase activity, and insulinase inhibitor potentiated to some extent the action of insulin.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2626
Author(s):  
Wael Sobhy Darwish ◽  
Abada El Sayed Khadr ◽  
Maher Abd El Naby Kamel ◽  
Mabrouk A. Abd Eldaim ◽  
Ibrahim El Tantawy El Sayed ◽  
...  

Ceratonia siliqua (Carob) is an evergreen Mediterranean tree, and carob pods are potentially nutritive and have medicinal value. The present study was carried out to estimate the possible biological activities of phytochemical-characterized carob pod aqueous extract (CPAE). The phytochemical contents of CPAE were determined by using colorimetric methods and HPLC. In addition, the free radical scavenging properties and anti-diabetic, anti-hemolytic, and antimicrobial activities were estimated by using standardized in vitro protocols. The phytochemical analysis revealed that CPAE was rich in polyphenols, flavonoids, and alkaloids, where it contained a significant amount of gallic acid, catechin, and protocatechuic acid. Furthermore, CPAE exhibited strong antioxidant activity where it prevented the formation of 2, 2-Diphenyl-1-picryl hydrazyl, hydroxyl, and nitric oxide free radicals. Additionally, it had a potent inhibitory effect against digestive enzymes (amylase, maltase, sucrase, and lactase). Moreover, CPAE exhibited anti-Staph aureus, anti-Escherichia coli, anti-Candida albicans, and anti-herpes simplex type I virus (HSV-I). Finally, CPAE protected the erythrocyte membrane from hypotonic solution-induced hemolysis. Altogether, CPAE could be regarded as an interesting source of biologically active antioxidant, anti-diabetic, and antimicrobial preparation for a potential application in pharmaceutical and food supplement fields.


2018 ◽  
Vol 9 (4) ◽  
pp. 2051-2069 ◽  
Author(s):  
Faiza Mejri ◽  
Slimen Selmi ◽  
Alice Martins ◽  
Haifa benkhoud ◽  
Tarek Baati ◽  
...  

Broad bean pods have been proven to be a functional food with promising in vitro and in vivo biological activities.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3266 ◽  
Author(s):  
Gokhan Zengin ◽  
Luigi Menghini ◽  
Antonella Di Sotto ◽  
Romina Mancinelli ◽  
Francesca Sisto ◽  
...  

Due to renewed interest in the cultivation and production of Italian Cannabis sativa L., we proposed a multi-methodological approach to explore chemically and biologically both the essential oil and the aromatic water of this plant. We reported the chemical composition in terms of cannabinoid content, volatile component, phenolic and flavonoid pattern, and color characteristics. Then, we demonstrated the ethnopharmacological relevance of this plant cultivated in Italy as a source of antioxidant compounds toward a large panel of enzymes (pancreatic lipase, α-amylase, α-glucosidase, and cholinesterases) and selected clinically relevant, multidrug-sensible, and multidrug-resistant microbial strains (Staphylococcus aureus, Helicobacter pylori, Candida, and Malassezia spp.), evaluating the cytotoxic effects against normal and malignant cell lines. Preliminary in vivo cytotoxicity was also performed on Galleria mellonella larvae. The results corroborate the use of this natural product as a rich source of important biologically active molecules with particular emphasis on the role exerted by naringenin, one of the most important secondary metabolites.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaolong Ji ◽  
Mingsong Yin ◽  
Hui Nie ◽  
Yanqi Liu

Recently, polysaccharides from Bletilla striata, a member of the orchidaceous family, aroused the wide interest of people, especially their isolation, chemical properties, and bioactivities. It is reported that these polysaccharides are the most important biologically active components of B. striata, exhibiting various biological activities, such as immunomodulatory, antioxidant, antifibrotic, and hemostatic effects. This review appraised the available literatures which described different aspects of B. striata polysaccharides, including the extraction, separation, purification, structural characterization, and biological activities. We expect to lay the foundation for further investigation of the application of B. striata polysaccharides in the field of functional foods and biomedicine.


2007 ◽  
Vol 66 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Ian T. Johnson

Epidemiological studies showing a protective effect of diets rich in fruits and vegetables against cancer have focused attention on the possibility that biologically-active plant secondary metabolites exert anti-carcinogenic activity. This huge group of compounds, now collectively termed ‘phytochemicals’, provides much of the flavour and colour of edible plants and the beverages derived from them. Many of these compounds also exert anti-carcinogenic effects in animal models of cancer, and much progress has been made in defining their many biological activities at the molecular level. Such mechanisms include the detoxification and enhanced excretion of carcinogens, the suppression of inflammatory processes such as cyclooxygenase-2 expression, inhibition of mitosis and the induction of apoptosis at various stages in the progression and promotion of cancer. However, much of the research on phytochemicals has been conducted in vitro, with little regard to the bioavailability and metabolism of the compounds studied. Many phytochemicals present in plant foods are poorly absorbed by human subjects, and this fraction usually undergoes metabolism and rapid excretion. Some compounds that do exert anti-carcinogenic effects at realistic doses may contribute to the putative benefits of plant foods such as berries, brassica vegetables and tea, but further research with human subjects is required to fully confirm and quantify such benefits. Chemoprevention using pharmacological doses of isolated compounds, or the development of ‘customised’ vegetables, may prove valuable but such strategies require a full risk–benefit analysis based on a thorough understanding of the long-term biological effects of what are often surprisingly active compounds.


Sign in / Sign up

Export Citation Format

Share Document