scholarly journals Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 240
Author(s):  
Sadaf Samimi Gharaie ◽  
Amir Seyfoori ◽  
Bardia Khun Jush ◽  
Xiong Zhou ◽  
Erik Pagan ◽  
...  

Hydrogel-based bio-inks have been extensively used for developing three-dimensional (3D) printed biomaterials for biomedical applications. However, poor mechanical performance and the inability to conduct electricity limit their application as wearable sensors. In this work, we formulate a novel, 3D printable electro-conductive hydrogel consisting of silicate nanosheets (Laponite), graphene oxide, and alginate. The result generated a stretchable, soft, but durable electro-conductive material suitable for utilization as a novel electro-conductive bio-ink for the extrusion printing of different biomedical platforms, including flexible electronics, tissue engineering, and drug delivery. A series of tensile tests were performed on the material, indicating excellent stability under significant stretching and bending without any conductive or mechanical failures. Rheological characterization revealed that the addition of Laponite enhanced the hydrogel’s mechanical properties, including stiffness, shear-thinning, and stretchability. We also illustrate the reproducibility and flexibility of our fabrication process by extrusion printing various patterns with different fiber diameters. Developing an electro-conductive bio-ink with favorable mechanical and electrical properties offers a new platform for advanced tissue engineering.

2018 ◽  
Vol 774 ◽  
pp. 161-166 ◽  
Author(s):  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz ◽  
Jabid E. Quiroga Mendez

Three-dimensional (3D) printing technology has been traditionally used for the production of prototypes. Recently, developments in 3D printing using Fused Deposition Modelling (FDM) and reinforcement with continuous fibres (fiberglass and carbon fibre), have allowed the manufacture of functional prototypes, considerably improving the mechanical performance of the composite parts. In this work, we characterise the elastic tensile properties of fibre reinforced specimens, considering the variation of several parameters available during the printing process: fibre orientation, volume fraction, fill pattern, reinforcement distribution. Tensile tests were performed according to ASTM D638 to obtain Young’s modulus and ultimate strength for different material configurations available during the printing process. We also perform a fractographic analysis using Scanning Electron Microscopy (SEM) to give an insight of the failure mechanisms present in the specimens.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


2018 ◽  
Vol 934 ◽  
pp. 129-133 ◽  
Author(s):  
Chao Fan Lv ◽  
Li Ya Zhu ◽  
Jian Ping Shi ◽  
Zong An Li ◽  
Wen Lai Tang ◽  
...  

Three-dimensional (3D) printing has been playing an important role in diverse areas in medicine. In order to promote the development of tissue engineering, this study attempts to fabricate tissue engineering scaffolds using the inkjet printing technology. Sodium alginate, exhibiting similar properties to the native human extracellular matrix (ECM), was used as bioink. The jetted fluid of sodium alginate would be gelatinized when printed into the calcium chloride solution. The characteristics of the 3D-printed sodium alginate scaffold were systematically measured and analyzed. The results show that, the pore size, porosity and degradation property of these scaffolds could be well controlled. This study indicates the capability of 3D bioprinting technology for preparing tissue engineering scaffolds.


Soft Matter ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 765-772 ◽  
Author(s):  
Jheng-Wun Su ◽  
Xiang Tao ◽  
Heng Deng ◽  
Cheng Zhang ◽  
Shan Jiang ◽  
...  

There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Ryan R. Duling ◽  
Rebecca B. Dupaix ◽  
Noriko Katsube ◽  
John Lannutti

This paper investigates the mechanical behavior of electrospun polycaprolactone (PCL) under tensile loading. PCL in bulk form degrades slowly and is biocompatible, two properties that make it a viable option for tissue engineering applications in biomedicine. Of particular interest is the use of electrospun PCL tubes as scaffolds for tissue engineered blood vessel implants. Stress relaxation and tensile tests have been conducted with specimens at room temperature (21°C) and 37°C. Additionally, to probe the effects of moisture on mechanical behavior, specimens were tested either dry (in air) or submerged in water. In general, the electrospun PCL was found to exhibit rate dependence, as well as some dependence on the test temperature and on whether the sample was wet or dry. Two different models were investigated to describe the experimentally observed material behavior. The models used were Fung’s theory of quasilinear viscoelasticity (QLV) and the eight-chain model developed for rubber elastomers by Arruda and Boyce (1993, “A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids, 41(2), pp. 389–412). The implementation and fitting results, as well as the advantages and disadvantages of each model, are presented. In general, it was found that the QLV theory provided a better fit.


Sign in / Sign up

Export Citation Format

Share Document