scholarly journals Longevity: Lesson from Model Organisms

Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 518 ◽  
Author(s):  
Giusi Taormina ◽  
Federica Ferrante ◽  
Salvatore Vieni ◽  
Nello Grassi ◽  
Antonio Russo ◽  
...  

Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities. Yeasts, worms, fruit flies, or mammalian models such as mice, monkeys, and recently, dogs, have helped shed light on aging processes. Genes and molecular mechanisms that were found to be critical in simple eukaryotic cells and species have been confirmed in humans mainly by the functional analysis of mammalian orthologues. Here, we review conserved aging mechanisms discovered in different model systems that are implicated in human longevity as well and that could be the target of anti-aging interventions in human.

2019 ◽  
Vol 20 (17) ◽  
pp. 4179 ◽  
Author(s):  
Baubak Bajoghli ◽  
Advaita M. Dick ◽  
Annisa Claasen ◽  
Larissa Doll ◽  
Narges Aghaallaei

Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yuqing Dong ◽  
Sujay Guha ◽  
Xiaoping Sun ◽  
Min Cao ◽  
Xiaoxia Wang ◽  
...  

Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates,Caenorhabditis elegansandDrosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.


2015 ◽  
Vol 6 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Giusi Taormina ◽  
Mario G. Mirisola

AbstractMany aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity.


2019 ◽  
Author(s):  
Amruta Karbelkar ◽  
Annette R Rowe ◽  
Moh El-Naggar

Extracellular electron transfer (EET) allows microbes to acquire energy from solid state electron acceptors and donors, such as environmental minerals. This process can also be harnessed at electrode interfaces in bioelectrochemical technologies including microbial fuel cells, microbial electrosynthesis, bioremediation, and wastewater treatment. Improving the performance of these technologies will benefit from a better fundamental understanding of EET in diverse microbial systems. While the mechanisms of outward (i.e. microbe-to-anode) EET is relatively well characterized, specifically in a few metal-reducing bacteria, the reverse process of inward EET from redox-active minerals or cathodes to bacteria remains poorly understood. This knowledge gap stems, at least partly, from the lack of well-established model organisms and general difficulties associated with laboratory studies in existing model systems. Recently, a sulfur oxidizing marine microbe, <i>Thioclava electrotropha</i> ElOx9, was demonstrated to perform electron uptake from cathodes. However, a detailed analysis of the electron uptake pathways has yet to be established, and electrochemical characterization has been limited to aerobic conditions. Here, we report a detailed amperometric and voltammetric characterization of ElOx9 cells coupling cathodic electron uptake to reduction of nitrate as the sole electron acceptor. We demonstrate that this inward EET by ElOx9 is facilitated by a direct-contact mechanism through a redox center with a formal potential of -94 mV vs SHE, rather than soluble intermediate electron carriers. In addition to the implications for understanding microbial sulfur oxidation in marine environments, this study highlights the potential for ElOx9 to serve as a convenient and readily culturable model organism for understanding the molecular mechanisms of inward EET.


2018 ◽  
Author(s):  
Ross F. Waller ◽  
Phillip A. Cleves ◽  
Maria Rubio-Brotons ◽  
April Woods ◽  
Sara J. Bender ◽  
...  

AbstractOur current understanding of biology is heavily based on the contributions from a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate. To address this deficit, an initiative was launched in 2015 to foster development of ecologically and taxonomically diverse marine protist genetic models. This multifaceted, complex but important challenge required a highly collaborative community-based approach. Herein we describe this approach, the advances achieved, and the lessons learned by participants in this novel community-based model for research.


Geriatrics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 95
Author(s):  
Carla Pignatti ◽  
Stefania D’Adamo ◽  
Claudio Stefanelli ◽  
Flavio Flamigni ◽  
Silvia Cetrullo

Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.


Author(s):  
Yasmine el Azhar ◽  
Katharina F. Sonnen

Despite decades of research, the complex processes of embryonic development are not fully understood. The study of mammalian development poses particular challenges such as low numbers of embryos, difficulties in culturing embryos in vitro, and the time to generate mutant lines. With new approaches we can now address questions that had to remain unanswered in the past. One big contribution to studying the molecular mechanisms of development are two- and three-dimensional in vitro model systems derived from pluripotent stem cells. These models, such as blastoids, gastruloids, and organoids, enable high-throughput screens and straightforward gene editing for functional testing without the need to generate mutant model organisms. Furthermore, their use reduces the number of animals needed for research and allows the study of human development. Here, we outline and discuss recent advances in such in vitro model systems to investigate pre-implantation and post-implantation development.


2019 ◽  
Author(s):  
Amruta Karbelkar ◽  
Annette R Rowe ◽  
Moh El-Naggar

Extracellular electron transfer (EET) allows microbes to acquire energy from solid state electron acceptors and donors, such as environmental minerals. This process can also be harnessed at electrode interfaces in bioelectrochemical technologies including microbial fuel cells, microbial electrosynthesis, bioremediation, and wastewater treatment. Improving the performance of these technologies will benefit from a better fundamental understanding of EET in diverse microbial systems. While the mechanisms of outward (i.e. microbe-to-anode) EET is relatively well characterized, specifically in a few metal-reducing bacteria, the reverse process of inward EET from redox-active minerals or cathodes to bacteria remains poorly understood. This knowledge gap stems, at least partly, from the lack of well-established model organisms and general difficulties associated with laboratory studies in existing model systems. Recently, a sulfur oxidizing marine microbe, <i>Thioclava electrotropha</i> ElOx9, was demonstrated to perform electron uptake from cathodes. However, a detailed analysis of the electron uptake pathways has yet to be established, and electrochemical characterization has been limited to aerobic conditions. Here, we report a detailed amperometric and voltammetric characterization of ElOx9 cells coupling cathodic electron uptake to reduction of nitrate as the sole electron acceptor. We demonstrate that this inward EET by ElOx9 is facilitated by a direct-contact mechanism through a redox center with a formal potential of -94 mV vs SHE, rather than soluble intermediate electron carriers. In addition to the implications for understanding microbial sulfur oxidation in marine environments, this study highlights the potential for ElOx9 to serve as a convenient and readily culturable model organism for understanding the molecular mechanisms of inward EET.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3035-3046 ◽  
Author(s):  
D.J. Montell

Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.


Sign in / Sign up

Export Citation Format

Share Document