scholarly journals Human Colorectal Cancer from the Perspective of Mouse Models

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 788 ◽  
Author(s):  
Monika Stastna ◽  
Lucie Janeckova ◽  
Dusan Hrckulak ◽  
Vitezslav Kriz ◽  
Vladimir Korinek

Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.

2019 ◽  
Vol 20 (23) ◽  
pp. 5822 ◽  
Author(s):  
Yoshiro Itatani ◽  
Kenji Kawada ◽  
Yoshiharu Sakai

Transforming growth factor-beta (TGF-β) signaling is one of the important cellular pathways that play key roles for tissue maintenance. In particular, it is important in the context of inflammation and tumorigenesis by modulating cell growth, differentiation, apoptosis, and homeostasis. TGF-β receptor type 2 (TGFBR2) mutations affected by a mismatch repair deficiency causes colorectal cancers (CRCs) with microsatellite instability, which is, however, associated with relatively better survival rates. On the other hand, loss of SMAD4, a transcription factor in the TGF-β superfamily signaling, promotes tumor progression. Loss of heterozygosity on chromosome 18 can case SMAD4-deficient CRC, which results in poorer patients’ survival. Such bidirectional phenomenon driven by TGF-β signaling insufficiency reflects the complexity of this signaling pathway in CRC. Moreover, recent understanding of CRC at the molecular level (consensus molecular subtype classification) provides deep insight into the important roles of TGF-β signaling in the tumor microenvironment. Here we focus on the TGF-β signaling in CRC and its interaction with the tumor microenvironment. We summarize the molecular mechanisms of CRC tumorigenesis and progression caused by disruption of TGF-β signaling by cancer epithelial cells and host stromal cells.


2014 ◽  
Vol 26 (1) ◽  
pp. 177
Author(s):  
H.-R. Lee ◽  
R.-E. Go ◽  
K.-C. Choi

Activated oestrogen receptor (ER) signaling pathway by 17β-estadiol (E2) appeared to suppress transforming growth factor β (TGF-β) signaling pathway by cross-talk with TGF-β components in ER-positive cancer cells. In this study, we further examined the inhibitory effects of alkylphenols, including 4-nonylphenol (NP), 4-otylphenol (OP), bisphenol A (BPA), and benzophenon-1 (BP-1), in TGF-β signaling pathway. The transcriptional and translational levels of TGF-β-related genes were examined by reverse-transcription PCR (RT-PCR), Western blotting analysis in xenografted mouse models of ovarian cancer BG-1 cells. The NP, OP, and BPA induced the expression of snoN, a TGF-β pathway inhibitor. Treatment with NP, BPA, and BP-1 resulted in decreased phosphorylation of Smad3, a downstream target of TGF-β. With these 2 effects, NP and BPA stimulated the proliferation of BG-1 cells via inhibition of the TGF-β signaling pathway. In a xenograft mouse model, transplanted BG-1 ovarian cancer cells showed significantly decreased phosphorylation of Smad3 and increased expression of snoN in the ovarian tumour masses following treatment with E2, NP, or BPA. In parallel with an in vitro model, the expressions of TGF-β signaling pathway were similarly regulated by NP or BPA in a xenograft mouse model, revealing consistent results. Taken together, these results support that NP and BPA may cause the disruption of the TGF-β signaling pathway and increase the risk of oestrogen-dependent cancers such as ovarian cancer. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ009599), Rural Development Administration, Republic of Korea.


2001 ◽  
Vol 276 (50) ◽  
pp. 46707-46713 ◽  
Author(s):  
Neil A. Bhowmick ◽  
Roy Zent ◽  
Mayshan Ghiassi ◽  
Maureen McDonnell ◽  
Harold L. Moses

Transforming growth factor-β (TGF-β) can induce epithelial to mesenchymal transdifferentiation (EMT) in mammary epithelial cells. TGF-β-meditated EMT involves the stimulation of a number of signaling pathways by the sequential binding of the type II and type I serine/threonine kinase receptors, respectively. Integrins comprise a family of heterodimeric extracellular matrix receptors that mediate cell adhesion and intracellular signaling, hence making them crucial for EMT progression. In light of substantial evidence indicating TGF-β regulation of various β1integrins and their extracellular matrix ligands, we examined the cross-talk between the TGF-β and integrin signal transduction pathways. Using an inducible system for the expression of a cytoplasmically truncated dominant negative TGF-β type II receptor, we blocked TGF-β-mediated growth inhibition, transcriptional activation, and EMT progression. Dominant negative TGF-β type II receptor expression inhibited TGF-β signaling to the SMAD and AKT pathways, but did not block TGF-β-mediated p38MAPK activation. Interestingly, blocking integrin β1function inhibited TGF-β-mediated p38MAPK activation and EMT progression. Limiting p38MAPK activity through the expression of a dominant negative-p38MAPK also blocked TGF-β-mediated EMT. In summary, TGF-β-mediated p38MAPK activation is dependent on functional integrin β1, and p38MAPK activity is required but is not sufficient to induce EMT.


2009 ◽  
Vol 137 (1) ◽  
pp. 165-175 ◽  
Author(s):  
Johannes Fritzmann ◽  
Markus Morkel ◽  
Daniel Besser ◽  
Jan Budczies ◽  
Frauke Kosel ◽  
...  

2019 ◽  
Vol 18 (27) ◽  
pp. 2355-2366 ◽  
Author(s):  
Manisha Majhi ◽  
Meer Asif Ali ◽  
Akanksha Limaye ◽  
Kritika Sinha ◽  
Praveena Bairagi ◽  
...  

Colorectal cancer possesses the third highest diagnostic rate and is the second leading cause of cancer death in the USA as reported by NIH. Epidermal Growth Factor Receptor (EGFR), a transmembrane protein, participates in PLC gamma-1, RAS-RAF-MEK-MAPKs, phosphatidylinositol-3 kinase, Akt pathways and plays a key role in normal functioning of cell division, cell differentiation, apoptosis and migration. This protein is found to be overexpressed in more than 60% of the colorectal cancers. Overexpressed EGFR advances the tumorigenic properties through cell cycle dysregulation and activates signaling pathways linked to cancer such as WNT/β-catenin, transforming growth factor β (TGF-β) and phosphoinositide-3-kinase (PI3K). Inhibiting the overexpressed EGFR protein has been proposed for the treatment and many inhibitors have been reported suppressing the activity of EGFR. However, patients in malignant state of cancer show resistance to those inhibitors, which open a wide space to research for the discovery of novel inhibitors. The present study employed Molecular Docking and Virtual Screening to find novel inhibitors with high affinity against EGFR. Molecular docking of existing inhibitors resulted in the compound titled as BGB-283 (PubChem CID-89670174) having the highest score, which was subjected to similarity search to retrieve the drugs with similar structure. The virtual screening concluded a compound SCHEMBL18435602 (PubChem CID-126517400) which revealed a better affinity with the target protein. A comparative study of both the compounds showed equivalent pharmacokinetic properties. These identified drugs have a high potential to act as EGFR inhibitors and can show promising results in the research of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document