scholarly journals Experimental Approaches in Delineating mTOR Signaling

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 738
Author(s):  
Jiayi Qian ◽  
Siyuan Su ◽  
Pengda Liu

The mTOR signaling controls essential biological functions including proliferation, growth, metabolism, autophagy, ageing, and others. Hyperactivation of mTOR signaling leads to a plethora of human disorders; thus, mTOR is an attractive drug target. The discovery of mTOR signaling started from isolation of rapamycin in 1975 and cloning of TOR genes in 1993. In the past 27 years, numerous research groups have contributed significantly to advancing our understanding of mTOR signaling and mTOR biology. Notably, a variety of experimental approaches have been employed in these studies to identify key mTOR pathway members that shape up the mTOR signaling we know today. Technique development drives mTOR research, while canonical biochemical and yeast genetics lay the foundation for mTOR studies. Here in this review, we summarize major experimental approaches used in the past in delineating mTOR signaling, including biochemical immunoprecipitation approaches, genetic approaches, immunofluorescence microscopic approaches, hypothesis-driven studies, protein sequence or motif search driven approaches, and bioinformatic approaches. We hope that revisiting these distinct types of experimental approaches will provide a blueprint for major techniques driving mTOR research. More importantly, we hope that thinking and reasonings behind these experimental designs will inspire future mTOR research as well as studies of other protein kinases beyond mTOR.

2020 ◽  
Vol 26 ◽  
Author(s):  
Pengmian Feng ◽  
Lijing Feng ◽  
Chaohui Tang

Background and Purpose: N 6 -methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As good complements to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. Methods: In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on existing methods. Results: Since researches on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progresses on computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites were presented. Conclusion: Taken together, we anticipate that this review will provide important guides for computational analysis of m 6A modifications.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chen Wang ◽  
Jiawei Zhang ◽  
Jie Yin ◽  
Yichao Gan ◽  
Senlin Xu ◽  
...  

AbstractThe Myc proto-oncogene family consists of three members, C-MYC, MYCN, and MYCL, which encodes the transcription factor c-Myc (hereafter Myc), N-Myc, and L-Myc, respectively. Myc protein orchestrates diverse physiological processes, including cell proliferation, differentiation, survival, and apoptosis. Myc modulates about 15% of the global transcriptome, and its deregulation rewires the cellular signaling modules inside tumor cells, thereby acquiring selective advantages. The deregulation of Myc occurs in >70% of human cancers, and is related to poor prognosis; hence, hyperactivated Myc oncoprotein has been proposed as an ideal drug target for decades. Nevertheless, no specific drug is currently available to directly target Myc, mainly because of its “undruggable” properties: lack of enzymatic pocket for conventional small molecules to bind; inaccessibility for antibody due to the predominant nucleus localization of Myc. Although the topic of targeting Myc has actively been reviewed in the past decades, exciting new progresses in this field keep emerging. In this review, after a comprehensive summarization of valuable sources for potential druggable targets of Myc-driven cancer, we also peer into the promising future of utilizing macropinocytosis to deliver peptides like Omomyc or antibody agents to intracellular compartment for cancer treatment.


2021 ◽  
Vol 14 (6) ◽  
pp. 587
Author(s):  
Zhaoyu Chen ◽  
Qinghua Cui ◽  
Michael Caffrey ◽  
Lijun Rong ◽  
Ruikun Du

Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Author(s):  
Joseph M. Iaquinto ◽  
Richard Tsai ◽  
Michael J. Fassbind ◽  
David R. Haynor ◽  
Bruce J. Sangeorzan ◽  
...  

The ability to accurately measure three dimensional (3D) bone kinematics is key to understanding the motion of the joints of the body, and how such motion is altered by injury, disease, and treatment. Precise measurement of such kinematics is technically challenging. Biplane fluoroscopy is ideally suited to measure bone motion. Such systems have been developed in the past for both radiographic stereo-photogrammetric analysis (RSA) [1] and the more challenging model-based analysis [2]. Research groups have studied the knee [3,4], shoulder [5] and ankle [6] motion with similar techniques. The work presented here is an initial evaluation of the performance of our system, i.e., a validation that this in-house system can detect magnitudes of motion on-par with other existing systems.


PEDIATRICS ◽  
1992 ◽  
Vol 89 (1) ◽  
pp. 172-173
Author(s):  
JOHN KATTWINKEL

To the Editor.— Dr Lucey has praised the neonatology profession for finally "getting it right" in its recent development of surfactant therapy for neonatal respiratory distress syndrome.1 Although, in some respects, I agree that we have done it better than in the past, I believe there needs to be an opposing view presented to his uniformly rosy assessment. Yes, we do have a "therapy which we know works and is safe," and which was an international joint product of research groups, industry, and the Food and Drug Administration.


2014 ◽  
Vol 39 (1) ◽  
Author(s):  
Eric George

Over the past 40 years, important work has been done on cultural industries through the close collaboration of researchers in Québec and France, to the point that it has become a question of the theory of cultural industries. In this article, I first examine the institutional contexts that have supported the development of research on this theme within French and Québécoise research groups. I then focus on discussions around the very nature of “the cultural industry” as a research object, as well as its unique characteristics. Thirdly, I address another issue of debate among the protagonists of this text, the concept of a “social logic” (or “model”). Finally, I conclude with a few open-ended questions with the goal of deepening research in this domain.Depuis une quarantaine d’années, d’importants travaux ont été effectués sur les industries culturelles en collaboration étroite par des chercheurs francophones à la fois au Québec et en France tant et si bien qu’il est dorénavant question de théorie des industries culturelles. Dans le cadre de ce texte, nous allons tout d’abord revenir brièvement sur les contextes institutionnels qui ont favorisé le développement de travaux sur ce thème au sein des équipes de recherche française et québécoise. Par la suite, nous mettrons l’accent sur les discussions consacrées à la nature même de l’objet de recherche « l’industrie culturelle », ainsi qu’à ses caractéristiques, voire ses spécificités. Après quoi, nous aborderons un autre enjeu de débat parmi les protagonistes, à savoir celui qui porte sur le concept de « logique sociale » (ou de « modèle »). Enfin, nous conclurons sur quelques questions restées en suspens en vue d’approfondir les recherches dans le domaine.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2808 ◽  
Author(s):  
Myeong Hwi Lee ◽  
Dae-Yon Lee ◽  
Anand Balupuri ◽  
Jong-Woo Jeong ◽  
Nam Sook Kang

Autotaxin (ATX) is a potential drug target that is associated with inflammatory diseases and various cancers. In our previous studies, we have designed several inhibitors targeting ATX using computational and experimental approaches. Here, we have analyzed topological water networks (TWNs) in the binding pocket of ATX. TWN analysis revealed a pharmacophoric site inside the pocket. We designed and synthesized compounds considering the identified pharmacophoric site. Furthermore, we performed biological experiments to determine their ATX inhibitory activities. High potency of the designed compounds supports the predictions of the TWN analysis.


2019 ◽  
Vol 20 (6) ◽  
pp. 492-494 ◽  
Author(s):  
Qi Zhao ◽  
Haifan Yu ◽  
Mingxuan Ji ◽  
Yan Zhao ◽  
Xing Chen

In the medical field, drug-target interactions are very important for the diagnosis and treatment of diseases, they also can help researchers predict the link between biomolecules in the biological field, such as drug-protein and protein-target correlations. Therefore, the drug-target research is a very popular study in both the biological and medical fields. However, due to the limitations of manual experiments in the laboratory, computational prediction methods for drug-target relationships are increasingly favored by researchers. In this review, we summarize several computational prediction models of the drug-target connections during the past two years, and briefly introduce their advantages and shortcomings. Finally, several further interesting research directions of drug-target interactions are listed.


Sign in / Sign up

Export Citation Format

Share Document