scholarly journals Two Cases of Recessive Intellectual Disability Caused by NDST1 and METTL23 Variants

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1021
Author(s):  
Amjad Khan ◽  
Zhichao Miao ◽  
Muhammad Umair ◽  
Amir Ullah ◽  
Mohammad A. Alshabeeb ◽  
...  

Intellectual disability (ID) is a highly heterogeneous genetic condition with more than a thousand genes described so far. By exome sequencing of two consanguineous families presenting hallmark features of ID, we identified two homozygous variants in two genes previously associated with autosomal recessive ID: NDST1 (c.1966G>A; p.Asp656Asn) and METTL23 (c.310T>C; p.Phe104Leu). The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the secondary structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic NDST1 and METTL23 variants in two cases of autosomal recessive ID further highlight the importance of these genes in proper brain function and development.

2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1229-1229
Author(s):  
Thomas L. Ortel ◽  
Gary Beecham ◽  
Dale Hedges ◽  
Patrice Whitehead ◽  
Ashley Beecham ◽  
...  

Abstract Abstract 1229 Background: Thrombotic storm (TS) is an extremely severe clinical phenotype that occurs in a very small subset of patients with venous thromboembolic disease. It is characterized by patients who exhibit two or more of the following in a short period of time; 1) > 2 acute arterial/venous thromboemboli, and/or thrombotic microangiopathy, 2) unusual location, 3) progressive/recent unexplained recurrence, and/or 4) refractory to and/or atypical response to therapy (Kitchens et al., Am J Med, 2011). We hypothesize these patients possess an underlying prothrombotic risk factor that results in an accelerated form of thrombosis following an initial event that provokes the attack in the relevant clinical context. Methods: To identify potential genetic risk variants we performed whole-exome sequencing on a TS participant and his unaffected parents and sibling. The proband was a 14 year old male who presented with thrombosis of the sagittal, right transverse and sigmoid sinuses following a sports-related knee injury. There was no personal or family history of venous thromboembolism, and a hypercoagulable workup, including testing for antiphospholipid antibodies, was negative. His course was complicated by the development of disseminated intravascular coagulation, delaying early initiation of anticoagulant therapy. Despite aggressive supportive care, which included anticoagulation therapy, the proband did not improve and expired after severe cerebral edema with herniation was diagnosed by clinical exam and CT imaging. At autopsy, bilateral pulmonary emboli and extensive pelvic vein thrombosis were also identified. DNA was extracted from whole blood and the relevant regions were captured using the Agilent Sure Select 50mb kit. Sequencing was performed on the Illumina HiSeq2000 under the manufacturer's recommended protocol. Alignment of reads to the reference was performed using BWA, and genotype calls were made with GATK. Variants were initially filtered based on quality (depth ≥ 8, phred-like quality ≥ 30), function (nonsense, missense, splicing), and novelty. Additional filters include inheritance mode (autosomal recessive or de novo heterozygote), conservation (phastcons score > 0.5, GERP score > 2), and damage prediction (SIFT or Polyphen). Potential variants were validated using Sanger sequencing. Results: Whole-exome sequencing identified over 127,000 variants in the nuclear family with at least one member having a high quality variant at the position. Filtering these variants based on function, novelty, and high quality in parents and affected proband reduced the list to 2,735 variants. Of these, 7 variants fit an autosomal recessive model (homozygous in the proband, heterozygous in both parents, not homozygous in the unaffected sibling); of these 7, two were at conserved sites, predicted to be damaging, and also called using SAMTOOLS. The first of the recessive variants is a nonsense variation in the EGFL8 gene (tyrosine to stop codon, at the 74th amino acid; tyr74stop), and the second is in HLA-E (gln276pro). Of the initial list of 2,735 variants there were 138 that fit a de novo heterozygous model (present in the affected proband, but not parents); of these 138, two were at a conserved site, predicted to be damaging, and were also called with SAMTOOLS. The first de novo heterozygote is in SLC26A2 (arg178stop), and the second variant is in PRMT7 (arg531trp). These four variants were resequenced using Sanger sequencing within the family. Three of the variants (EGFL8, SLC26A2, and PRMT7) were confirmed using Sanger; the fourth (HLA-E) is still being resequenced. Discussion: These variants represent excellent candidate loci for thrombotic storm risk. In particular, the EGFL8 variant is a homozygous change to a stop codon less than one quarter of the way through the open reading frame – a change that likely severely damages protein function. Additionally, EGFL8 (epidermal growth factor-like domain-containing protein 8) has two EGF domains, a common motif identified in hemostatic and fibrinolytic proteins, and is therefore potentially involved in coagulation. These variants will be further analyzed for frequency in controls and tested in animal models for functional significance. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Author(s):  
Ricardo Harripaul ◽  
Nasim Vasli ◽  
Anna Mikhailov ◽  
Muhammad Arshad Rafiq ◽  
Kirti Mittal ◽  
...  

Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations(ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7,andUSP44),and missense mutations include the first reports of variants inBDNForTET1associated with ID. The genes identified also showed overlap withde novogene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.


2021 ◽  
Author(s):  
Irma Järvelä ◽  
Tuomo Määttä ◽  
Anushree Acharya ◽  
Juha Leppälä ◽  
Shalini N. Jhangiani ◽  
...  

AbstractThe genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.


2021 ◽  
Author(s):  
Rubab Raza ◽  
Raul Jimenez-Heredia ◽  
Muhammad Zeeshan Anwar ◽  
Asmat Ullah ◽  
Ayisha Zia ◽  
...  

Abstract Purpose Systemic auto-inflammatory diseases are a diverse group of heterogeneous disorders resulting in development of the systemic inflammation in absence of the inflammatory induction. Sequence variants in the OTULIN gene, which disrupts its ubiquitination activity lead to auto-inflammation, panniculitis, and dermatosis syndrome. To date, only few disease-causing variants in the OTULIN have been reported.In the study, presented here, sequence analysis of the OTULIN gene in a patient, exhibiting features of OTULIN-related auto-inflammatory syndrome (ORAS), revealed a novel disease-causing missense variant p.(Thr312Met). Further, effect of the variant on structure and function of the OTULIN protein has been examined using in silico OTULINWT and OTULINT312M. Methods Cells, collected from the patient blood, were examined by flow cytometry. Search for the disease-causing variants was carried out using exome followed by Sanger sequencing. Effect of the sequence variant on structure of the mutated protein was studied using in-silico analyses. Results Flow cytometry analysis revealed slightly reduced number of lymphocytes, marked leukocytosis, and mildly increased levels of IgG. Whole exome sequencing coupled with Sanger sequencing revealed a homozygous missense variant [c.935C>T; p.(Thr312Met)] in the OTULIN gene. In-silico analyses revealed that the missense variant reduces OTULIN’s expression and promotes accumulation of LUBAC-linked UB chains leading to auto-inflammation.Conclusion Taken together, OTULIN may act as a novel therapeutic target for the development of immunomodulatory drugs that may potentially increase or stabilize their expression. Targeting more components of the Ub-proteasome pathway may provide new opportunities for therapeutic exploitation and drug discovery.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e22507-e22507
Author(s):  
Haibo Qiu ◽  
Wei Zhuang ◽  
Ting Wu ◽  
Min Huang ◽  
Zhiwei Zhou ◽  
...  

e22507 Background: The majority driven mutation of GIST are located in KIT and PDGFRA. A proportion of the remaining 10% of GIST without KIT or PDGFRA mutations called wild type GIST (wt-GIST). It is poor response to imatinib, sunitinib or regorafenib in these wt-GIST patients. It is lack of precise drug target of wt-GIST. We analyzed next generation exome sequencing (NGS) results in wt-GISTs. Methods: Whole exome sequencing was performed on freezing tumor tissue and peripheral blood DNA with 100X sequencing depth. The low frequency somatic mutation was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and Sanger sequencing. This study was approved by the ethical committee of Sun Yat-Sen University Cancer Center. Results: A total of 11 wt-GIST samples were analyzed. ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine Kinase) was mutated in one CD117 negative patients with 5.3% mutation frequency of c. 364G > A (p. A122T). Sanger sequencing couldn’t found the ROS1 mutated in tumor tissue. But this low frequency somatic mutation was verified by MALDI-TOF. Conclusions: This is the first report showed a new ROS1 somatic mutation in wt-GIST. Our results indicated that ROS1 could be a new possible driven mutation in wt-GIST. ROS1 rearrangement have been described in a subset of non-small-cell lung cancers (NSCLC). Crizotinib shows a potent curative effect in ROS1 rearrangement NSCLC. Therefore, crizotinib might be an appropriate drug to GIST patients with mutated ROS1.


2021 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results:Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions:Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


2017 ◽  
pp. 1-13
Author(s):  
Jan B. Egan ◽  
David L. Marks ◽  
Tara L. Hogenson ◽  
Anne M. Vrabel ◽  
Ashley N. Sigafoos ◽  
...  

Purpose Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician’s ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. Materials and Methods Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. Results The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522 VUSs of interest, including a large number of kinases. Ten receptor tyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. Conclusion The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians’ ability to make informed treatment decisions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Umair ◽  
Farooq Ahmad ◽  
Saeed Ahmad ◽  
Qamre Alam ◽  
Mohd Rehan ◽  
...  

Background: Polydactyly is a prevalent digit abnormality characterized by having extra digits/toes. Mutations in eleven known genes have been associated to cause nonsyndromic polydactyly: GLI3, GLI1, ZRS regulating LMBR1, IQCE, ZNF141, PITX1, MIPOL1, FAM92A, STKLD1, KIAA0825, and DACH1.Method: A single affected family member (IV-4) was subjected to whole-exome sequencing (WES) to identify the causal gene. Bi-directional Sanger sequencing was performed to segregate the identified variant within the family. In silico analysis was performed to investigate the effect of the variant on DNA binding properties.Results: whole-exome sequencing identified a bi-allelic missense variant (c.1010C > T; p. Ser337Leu) in exon nine of GLI1 gene located on chromosome 12q13.3. With the use of Sanger sequencing, the identified variant segregated perfectly with the disease phenotype. Furthermore, in silico analysis of this DNA binding protein revealed that the variant weakened the DNA binding interaction, resulting in indecorous GLI1 function.Conclusion: Herein, we report a novel variant in GLI1 gene, causing autosomal recessive post-axial polydactyly type A (PAPA) type 8. This confirms the critical role of GLI1 in digit development and might help in genotype–phenotype correlation in the future.


2021 ◽  
Vol 24 (10) ◽  
pp. 747-751
Author(s):  
Sara Cheraghi ◽  
Sahar Moghbelinejad ◽  
Hossein Najmabadi ◽  
Kimia Kahrizi ◽  
Reza Najafipour

Background: Intellectual disability (ID) is a heterogonous disorder with complex etiology. The frequency of autosomal recessive inheritance defects was elevated in a consanguineous family. Methods: In this study, high-throughput DNA sequencing was performed in an Iranian consanguineous family with two affected individuals to find potential causative variants. Whole-exome sequencing was carried out on the proband and Sanger sequencing was implemented for validation of the likely causative variant in the family members. Results: A novel homozygous missense mutation (p.Arg122Trp) was detected in the PTRHD1 gene. Conclusion: PTRHD1 has been recently introduced as a candidate ID and Parkinsonism causing gene. Our findings are in agreement with the clinical spectrum of PTRHD1 mutations; however, our affected individuals suffer from ID manifestations.


Sign in / Sign up

Export Citation Format

Share Document