scholarly journals Genome-Wide Association Study Reveals Genomic Regions Associated with Fusarium Wilt Resistance in Common Bean

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 765
Author(s):  
Jean Fausto de Carvalho de Carvalho Paulino ◽  
Caléo Panhoca de de Almeida ◽  
César Júnior Bueno ◽  
Qijian Song ◽  
Roberto Fritsche-Neto ◽  
...  

Fusarium wilt (Fusarium oxysporum f. sp. phaseoli, Fop) is one of the main fungal soil diseases in common bean. The aim of the present study was to identify genomic regions associated with Fop resistance through genome-wide association studies (GWAS) in a Mesoamerican Diversity Panel (MDP) and to identify potential common bean sources of Fop’s resistance. The MDP was genotyped with BARCBean6K_3BeadChip and evaluated for Fop resistance with two different monosporic strains using the root-dip method. Disease severity rating (DSR) and the area under the disease progress curve (AUDPC), at 21 days after inoculation (DAI), were used for GWAS performed with FarmCPU model. The p-value of each SNP was determined by resampling method and Bonferroni test. For UFV01 strain, two significant single nucleotide polymorphisms (SNPs) were mapped on the Pv05 and Pv11 for AUDPC, and the same SNP (ss715648096) on Pv11 was associated with AUDPC and DSR. Another SNP, mapped on Pv03, showed significance for DSR. Regarding IAC18001 strain, significant SNPs on Pv03, Pv04, Pv05, Pv07 and on Pv01, Pv05, and Pv10 were observed. Putative candidate genes related to nucleotide-binding sites and carboxy-terminal leucine-rich repeats were identified. The markers may be important future tools for genomic selection to Fop disease resistance in beans.

2020 ◽  
Vol 11 ◽  
Author(s):  
Paula Arielle Mendes Ribeiro Valdisser ◽  
Bárbara S. F. Müller ◽  
Janeo Eustáquio de Almeida Filho ◽  
Odilon Peixoto Morais Júnior ◽  
Cléber Morais Guimarães ◽  
...  

Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans’ yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r2sv), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.


Author(s):  
Jack W. O’Sullivan ◽  
John P. A. Ioannidis

AbstractWith the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are associated with various phenotypes has been accelerated. An open question is whether SNPs identified with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in later GWAS conducted in biobanks. To address this question, the authors examined a publicly available GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may often reflect lack of power rather than genuine false-positive findings, these results provide insights about which discovered associations are likely to be seen again across subsequent GWAS.


Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 4536-4546
Author(s):  
Semih Erdogmus ◽  
Duygu Ates ◽  
Seda Nemli ◽  
Bulent Yagmur ◽  
Tansel Kaygisiz Asciogul ◽  
...  

Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 49
Author(s):  
Miranda A. Farage ◽  
Yunxuan Jiang ◽  
Jay P. Tiesman ◽  
Pierre Fontanillas ◽  
Rosemarie Osborne

Individuals suffering from sensitive skin often have other skin conditions and/or diseases, such as fair skin, freckles, rosacea, or atopic dermatitis. Genome-wide association studies (GWAS) have been performed for some of these conditions, but not for sensitive skin. In this study, a total of 23,426 unrelated participants of European ancestry from the 23andMe database were evaluated for self-declared sensitive skin, other skin conditions, and diseases using an online questionnaire format. Responders were separated into two groups: those who declared they had sensitive skin (n = 8971) and those who declared their skin was not sensitive (controls, n = 14,455). A GWAS of sensitive skin individuals identified three genome-wide significance loci (p-value < 5 × 10−8) and seven suggestive loci (p-value < 1 × 10−6). Of the three most significant loci, all have been associated with pigmentation and two have been associated with acne.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150506 ◽  
Author(s):  
Juliana Morini Küpper Cardoso Perseguini ◽  
Paula Rodrigues Oblessuc ◽  
João Ricardo Bachega Feijó Rosa ◽  
Kleber Alves Gomes ◽  
Alisson Fernando Chiorato ◽  
...  

2021 ◽  
Author(s):  
Weihua Meng ◽  
Parminder Reel ◽  
Charvi Nangia ◽  
Aravind Rajendrakumar ◽  
Harry Hebert ◽  
...  

Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank cohort and the self-reported migraine phenotype from the 23andMe resource using the metaUSAT for genetically correlated phenotypes (N=397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and 4 loci were newly identified. The LRP1-STAT6-SDR9C7 region in chromosome 12 was the most significantly associated locus with a leading P value of 1.24 x 10-62 of rs11172113. The ONECUT2 gene locus in chromosome 18 was the strongest signal among the 4 new loci with a P value of 1.29 x 10-9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more new variants for headaches. This study has paved way for a large GWAS meta-analysis study involving cohorts of different, though genetically correlated headache phenotypes.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 418
Author(s):  
Fan Shao ◽  
Jing Liu ◽  
Mengyuan Ren ◽  
Junying Li ◽  
Haigang Bao ◽  
...  

Dwarfism is a condition defined by low harvest weight in fish, but also results in strange body figures which may have potential for the selective breeding of new ornamental fish strains. The objectives of this study are to reveal the physiological causes of dwarfism and identify the genetic loci controlling this trait in the white sailfin molly. Skeletons of dwarf and normal sailfin mollies were observed by X-ray radioscopy and skeletal staining. Genome-wide association studies based on genotyping-by-sequencing (n = 184) were used to map candidate genomic regions associated with the dwarfism trait. Quantitative real-time PCR was performed to determine the expression level of candidate genes in normal (n = 8) and dwarf (n = 8) sailfin mollies. We found that the dwarf sailfin molly has a short and dysplastic spine in comparison to the normal fish. Two regions, located at NW_015112742.1 and NW_015113621.1, were significantly associated with the dwarfism trait. The expression level of three candidate genes, ADAMTS like 1, Larp7 and PPP3CA, were significantly different between the dwarf and normal sailfin mollies in the hepatopancreas, with PPP3CA also showing significant differences in the vertebrae and Larp7 showing significant differences in the muscle. This study identified genomic regions and candidate genes associated with the dwarfism trait in the white sailfin molly and would provide a reference to determine dwarf-causing variations.


Sign in / Sign up

Export Citation Format

Share Document