scholarly journals Meta-Analysis of Brain Gene Expression Data from Mouse Model Studies of Maternal Immune Activation Using Poly(I:C)

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1363
Author(s):  
Aodán Laighneach ◽  
Lieve Desbonnet ◽  
John P. Kelly ◽  
Gary Donohoe ◽  
Derek W. Morris

Maternal immune activation (MIA) is a known risk factor for schizophrenia (SCZ) and autism spectrum disorder (ASD) and is often modelled in animal studies in order to study the effect of prenatal infection on brain function including behaviour and gene expression. Although the effect of MIA on gene expression are highly heterogeneous, combining data from multiple gene expression studies in a robust method may shed light on the true underlying biological effects caused by MIA and this could inform studies of SCZ and ASD. This study combined four RNA-seq and microarray datasets in an overlap analysis and ranked meta-analysis in order to investigate genes, pathways and cell types dysregulated in the MIA mouse models. Genes linked to SCZ and ASD and crucial in neurodevelopmental processes including neural tube folding, regulation of cellular stress and neuronal/glial cell differentiation were among the most consistently dysregulated in these ranked analyses. Gene ontologies including K+ ion channel function, neuron and glial cell differentiation, synaptic structure, axonal outgrowth, cilia function and lipid metabolism were also strongly implicated. Single-cell analysis identified excitatory and inhibitory cell types in the cortex, hippocampus and striatum that may be affected by MIA and are also enriched for genes associated with SCZ, ASD and cognitive phenotypes. This points to the cellular location of molecular mechanisms that may be consistent between the MIA model and neurodevelopmental disease, improving our understanding of its utility to study prenatal infection as an environmental stressor.

2016 ◽  
Author(s):  
Michael V. Lombardo ◽  
Hyang Mi Moon ◽  
Jennifer Su ◽  
Theo D. Palmer ◽  
Eric Courchesne ◽  
...  

AbstractMaternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates fetal brain gene expression near the end of the first trimester of human gestation in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in ASD cortex later in life and which are canonically known for roles in affecting prenatally-late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage, and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e-axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuen Gao ◽  
Natalia Duque-Wilckens ◽  
Mohammad B. Aljazi ◽  
Yan Wu ◽  
Adam J. Moeser ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disease associated with various gene mutations. Recent genetic and clinical studies report that mutations of the epigenetic gene ASH1L are highly associated with human ASD and intellectual disability (ID). However, the causality and underlying molecular mechanisms linking ASH1L mutations to genesis of ASD/ID remain undetermined. Here we show loss of ASH1L in the developing mouse brain is sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory. Gene expression analyses uncover critical roles of ASH1L in regulating gene expression during neural cell development. Thus, our study establishes an ASD/ID mouse model revealing the critical function of an epigenetic factor ASH1L in normal brain development, a causality between Ash1L mutations and ASD/ID-like behaviors in mice, and potential molecular mechanisms linking Ash1L mutations to brain functional abnormalities.


2021 ◽  
Vol 11 (3) ◽  
pp. 344
Author(s):  
Kinga Gzielo ◽  
Agnieszka Potasiewicz ◽  
Ewa Litwa ◽  
Diana Piotrowska ◽  
Piotr Popik ◽  
...  

Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171643 ◽  
Author(s):  
David N. Ruskin ◽  
Michelle I. Murphy ◽  
Sierra L. Slade ◽  
Susan A. Masino

2019 ◽  
Vol 282 ◽  
pp. 112621 ◽  
Author(s):  
Ryan J. Duchatel ◽  
Lauren R. Harms ◽  
Crystal L. Meehan ◽  
Patricia T. Michie ◽  
Mark J. Bigland ◽  
...  

2012 ◽  
Vol 136 ◽  
pp. S188
Author(s):  
Krassimira A. Garbett ◽  
Elaine Y. Hsiao ◽  
Sara Kálmán ◽  
Paul H. Patterson ◽  
Károly Mirnics

2021 ◽  
Author(s):  
Manuel Tavares ◽  
Garima Khandelwal ◽  
Joanne Mutter ◽  
Keijo Viiri ◽  
Manuel Beltran ◽  
...  

Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain repression of genes specific for other cell types and is essential for cell differentiation. In endometrial stromal sarcoma, the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. Here, we show that JAZF1-SUZ12 dysregulates PRC2 composition, recruitment, histone modification, gene expression and cell differentiation. The loss of the SUZ12 N-terminus in the fusion protein disrupted interaction with the PRC2 accessory factors JARID2, EPOP and PALI1 and prevented recruitment of PRC2 from RNA to chromatin. In undifferentiated cells, JAZF1-SUZ12 occupied PRC2 target genes but gained a JAZF1-like binding profile during cell differentiation. JAZF1-SUZ12 reduced H3K27me3 and increased H4Kac at PRC2 target genes, and this was associated with disruption in gene expression and cell differentiation programs. These results reveal the defects in chromatin regulation caused by JAZF1-SUZ12, which may underlie its role in oncogenesis.


2020 ◽  
Author(s):  
Cristina Paraschivescu ◽  
Susana Barbosa ◽  
Thomas Lorivel ◽  
Nicolas Glaichenhaus ◽  
Laetitia Davidovic

AbstractMaternal immune activation (MIA) during pregnancy increases the odds of developing neuropsychiatric disorders such as autism spectrum disorder (ASD) later in life. In pregnant mice, MIA can be induced by injecting the viral mimic polyinosinic:polycytidylic acid (poly(I:C) to pregnant dams resulting in altered fetal neurodevelopmental and behavioral changes in their progeny. Although the murine MIA model has been extensively studied worldwide, the underlying mechanisms have only been partially elucidated. Furthermore, the murine MIA model suffers from lack of reproducibility, at least in part because it is highly influenced by subtle changes in environmental conditions. In human studies, multivariable (MV) statistical analysis is widely used to control for covariates including sex, age, exposure to environmental factors and many others. We reasoned that animal studies in general, and studies on the MIA model in particular, could therefore benefit from MV analyzes to account for complex phenotype interactions and high inter-individual variability. Here, we used a dataset consisting of 26 variables collected on 67 male pups during the course of several independent experiments on the MIA model. We then analyzed this dataset using penalized regression to identify variables associated with in utero exposure to MIA. In addition to confirming the association between some previously described biological variables and MIA, we identified new variables that could play a role in neurodevelopment alterations. Aside from providing new insights into variable interactions in the MIA model, this study highlights the importance of extending the use of MV statistics to animal studies.


Sign in / Sign up

Export Citation Format

Share Document