scholarly journals Differential Expression of Long Non-Coding RNA (lncRNA) in Mediterranean Mussel (Mytilus galloprovincialis) Hemocytes under Immune Stimuli

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1393
Author(s):  
Patricia Pereiro ◽  
Rebeca Moreira ◽  
Beatriz Novoa ◽  
Antonio Figueras

The Mediterranean mussel is one of the most economically relevant bivalve mollusk species in Europe and China. The absence of massive mortalities and their resistance to pathogens affecting other cultured bivalves has been under study in recent years. The transcriptome response of this species to different immune stimuli has been extensively studied, and even the complexity of its genome, which has recently been sequenced, has been suggested as one of the factors contributing to this resistance. However, studies concerning the non-coding RNA profiles remain practically unexplored—especially those corresponding to the lncRNAs. To the best of our knowledge, this is the second characterization and study of lncRNAs in this bivalve species. In this work, we identified the potential repertoire of lncRNAs expressed in mussel hemocytes, and using RNA-Seq we analyzed the lncRNA profile of mussel hemocytes stimulated in vitro with three different immune stimuli: LPS, poly I:C, and β-glucans. Compared to unstimulated hemocytes, LPS induced the highest modulation of lncRNAs, whereas poly I:C and β-glucans induced a similar discrete response. Based on the potential cis-regulatory activity of the lncRNAs, we identified the neighboring protein-coding genes of the regulated lncRNAs to estimate—at least partially—the processes in which they are implicated. After applying correlation analyses, it seems that—especially for LPS—the lncRNAs could participate in the regulation of gene expression, and substantially contribute to the immune response.

2021 ◽  
Author(s):  
Calla L. Telzrow ◽  
Paul J. Zwack ◽  
Shannon Esher Righi ◽  
Fred S. Dietrich ◽  
Cliburn Chan ◽  
...  

ABSTRACTRibosomal RNA (rRNA) is the major RNA constituent of cells, therefore most RNA sequencing (RNA-Seq) experiments involve removal of rRNA. This process, called RNA enrichment, is done primarily to reduce cost: without rRNA removal, deeper sequencing would need to be performed to balance the sequencing reads wasted on rRNA. The ideal RNA enrichment method would remove all rRNA without affecting other RNA in the sample. We have tested the performance of three RNA enrichment methods on RNA isolated from Cryptococcus neoformans, a fungal pathogen of humans. We show that the RNase H depletion method unambiguously outperforms the commonly used Poly(A) isolation method: the RNase H method more efficiently depletes rRNA while more accurately recapitulating the expression levels of other RNA observed in an unenriched “gold standard”. The RNase H depletion method is also superior to the Ribo-Zero depletion method as measured by rRNA depletion efficiency and recapitulation of protein-coding gene expression levels, while the Ribo-Zero depletion method performs moderately better in preserving non-coding RNA (ncRNA). Finally, we have leveraged this dataset to identify novel long non-coding RNA (lncRNA) genes and to accurately map the C. neoformans mitochondrial rRNA genes.ARTICLE SUMMARYWe compare the efficacy of three different RNA enrichment methods for RNA-Seq in Cryptococcus neoformans: RNase H depletion, Ribo-Zero depletion, and Poly(A) isolation. We show that the RNase H depletion method, which is evaluated in C. neoformans samples for the first time here, is highly efficient and specific in removing rRNA. Additionally, using data generated through these analyses, we identify novel long non-coding RNA genes in C. neoformans. We conclude that RNase H depletion is an effective and reliable method for preparation of C. neoformans RNA-Seq libraries.


Author(s):  
Maoye Wang ◽  
Jianmei Gu ◽  
Xu Zhang ◽  
Jianping Yang ◽  
Xiaoxin Zhang ◽  
...  

Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng Yue ◽  
Tao Liu ◽  
Guoqiang Yan ◽  
Xiaofan Luo ◽  
Lei Wang

Abstract Background Colorectal cancer (CC) is one of the major contributors to tumor-related death worldwide, and its main cause of death is distant metastasis. Dysregulation of long non-coding RNA (lncRNA) LINC01605 has been implicated in CC. However, its role in metastasis of CC remains elusive. The goal of the study is to uncover the biological function and molecular mechanism of LINC01605 in CC. Methods The differentially expressed lncRNAs were first screened from GSE97300, GSE84983, GSE110715, GSE70880, and GSE75970 microarrays. The correlation between the expression of LINC01605 and the clinical phenotypes of enrolled CC patients (n = 134) was subsequently analyzed. The upstream and downstream regulatory mechanisms of LINC01605 in CC were identified through bioinformatics and RNA-seq analyses. Finally, the effects of related factors on CC cell growth and metastasis were confirmed through functional validation experiments. Results LINC01605, significantly highly expressed in CC, was a prognostic factor for patients with CC. Functional experiments revealed that LINC01605 knockdown inhibited the proliferatory and metastatic potential of CC cells in vitro and in vivo. Moreover, LINC01605 was regulated by SMYD2-EP300-mediated modifications of histone H3K4me3 as well as H3K27ac. LINC01605 was found to bind to METTL3 and promote the m6A modification of SPTBN2 mRNA, thereby facilitating the translation of SPTBN2. Conclusions Overexpression of LINC01605, regulated by SMYD2-EP300-mediated H3K27ac and H3K4me3 modifications, bound to METTL3 protein to promote m6A modification of SPTBN2 mRNA, leading to the development of CC.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 157 ◽  
Author(s):  
Jian Zheng ◽  
Zhibo Wang ◽  
Hua Yang ◽  
Xiaolei Yao ◽  
Pengcheng Yang ◽  
...  

Long non-coding RNA (LncRNA) have been identified as important regulators in the hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, their expression pattern and potential roles in the pituitary are yet unclear. To explore the potential mRNAs and lncRNAs that regulate the expression of the genes involved in sheep prolificacy, we used stranded specific RNA-seq to profile the pituitary transcriptome (lncRNA and mRNA) in high prolificacy (genotype FecB BB, litter size = 3; H) and low prolificacy sheep (genotype FecB B+; litter size = 1; L). Our results showed that 57 differentially expressed (DE) lncRNAs and 298 DE mRNAs were found in the pituitary between the two groups. The qRT-PCR results correlated well with the RNA-seq results. Moreover, functional annotation analysis showed that the target genes of the DE lncRNAs were significantly enriched in pituitary function, hormone-related pathways as well as response to stimulus and some other terms related to reproduction. Furthermore, a co-expression network of lncRNAs and target genes was constructed and reproduction related genes such as SMAD2, NMB and EFNB3 were included. Lastly, the interaction of candidate lncRNA MSTRG.259847.2 and its target gene SMAD2 were validated in vitro of sheep pituitary cells. These differential mRNA and lncRNA expression profiles provide a valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.


2021 ◽  
Author(s):  
Xiaobei Zhang ◽  
Meng Jin ◽  
Shiqi Liu ◽  
Mingde Zang ◽  
Lei Hu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are proposed to be responsible for almost all malignant phenotypes (e.g. heterogeneity, uncontrolled growth, metastasis, recurrence, chemoresistance) of tumors. Long non-coding RNA WT1 antisense RNA (WT1-AS) has been found to be involved in the regulation of lung cancer cell stemness. However, the roles and molecular mechanisms of WT1-AS in the maintenance and development of gastric cancer stem cells (GSCs) have not been investigated. Methods mRNA and protein expression was measured by RT-qPCR and western blot. CCK8 and Soft agar colony formation assays were performed to assess cell viability and colony clone formation ability. Cell cycle and apoptosis were determined by flow cytometry analysis. Cell transwell and wound healing analyses were carried out to assess cell migration ability. In vitro angiogenesis and 3D spheroid cultures assays were also performed. Moreover, in vitro experiments were carried out to explore the function of WT1-AS on tumor growth, metastasis and cell stemness. The upstream transcription factors or downstream genes of WT1-AS were screened through Bioinformatics, dual-luciferase assays and RNA-sequencing (RNA-seq) technology. Results Our present study demonstrated that WT1-AS knockdown or wilms tumor 1 (WT1) overexpression improved GSC proliferative and migratory capacities, promoted GSC EMT, enhanced GSC stemness, inhibited GSC apoptosis, potentiated the resistance of GSCs to 5-FU and induced HUVEC angiogenesis in vitro. WT1-AS loss or WT1 increase facilitated the formation of in-vitro 3D GSC aggregates. WT1-AS ameliorated the malignant phenotypes of GSCs by down-regulating WT in vitro. Additionally, WT1-AS inhibited tumor growth and metastasis, and reduced tumor stemness in GSCs-derived xenografts (s.c., i.p., and i.v.) in vivo. Furthermore, XBP1 was identified as an upstream regulator of WT1-AS in GSCs. RNA-seq and RT-qPCR data suggested that PSPH, GSTO2, FYN, and PHGDH might be the downstream targets of WT1-AS in GSCs. Conclusions Our data demonstrated that WT1-AS weakened the stem-cell like behaviors and characteristics of GSCs in vitro and in vivo by down-regulating WT1. Also, some upstream regulators and downstream targets of WT1-AS were identified in GSCs. Investigations on the molecular mechanisms underlying the complex phenotypes of GSCs might contribute to the better management of headaches in cancers.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 402
Author(s):  
Qinqin Guo ◽  
Lixin Cui ◽  
Weijun Sun ◽  
Feng Li ◽  
Haisheng Hao ◽  
...  

We measured differential expression profiles of genes and long non-coding RNA (lncRNA) using RNA sequencing in bovine embryos with or without glutathione (GSH) treatment. Bovine embryos fertilized in vitro were treated with GSH to blastocyst. Embryos at the 8-16-cell and morula stages were collected, with embryos without GSH treatment as the control. RNA was isolated, amplified, and sequenced. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) were identified and bioinformatic analyses carried out. Transcript levels were confirmed using quantitative RT-PCR. A total of 4100 DEGs were identified, of which 3952 were in GSH-treated morulae and 884 in untreated morulae. More gene ontology (GO) terms were associated with GSH treatment than with control conditions. KEGG analysis showed that glutathione metabolism, citrate cycle, and metabolic pathways involving glycine, serine, and threonine were observed only in GSH-treated embryos. Among 4273 DElncRNAs identified, 59 were potentially important in GSH-treated embryo development, including 14 involved in glutathione metabolism. The 59 DElncRNAs co-expressed with protein-coding mRNAs involved similar GO terms and pathways as the DEGs. This appears to be the first comprehensive profiling of DEGs and DElncRNAs in bovine embryos fertilized in vitro with or without GSH, and the first systematic screen of potential lncRNAs in bovine embryos.


2020 ◽  
Author(s):  
Keisuke Katsushima ◽  
Bongyong Lee ◽  
Haritha Kunhiraman ◽  
Cuncong Zhong ◽  
Rabi Murath ◽  
...  

AbstractBackgroundMedulloblastoma (MB) is an aggressive brain tumor that predominantly affects children. Recent high-throughput sequencing studies suggest that the non-coding RNA genome, in particular long non-coding RNAs (lncRNAs), contributes to MB sub-grouping. Here we report the identification of a novel lncRNA, lnc-HLX-2-7, as a potential molecular marker and therapeutic target in group 3 MBs.MethodsPublicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify lncRNAs that differentiate between MB subgroups. After characterizing a subset of differentially expressed lncRNAs in vitro and in vivo, the group 3-enriched lncRNA lnc-HLX2-7 was deleted by CRISPR/Cas9 in the MB cell line D425 Med. Intracranially injected tumors were further characterized by bulk and single-cell RNA-sequencing.Resultslnc-HLX-2-7 is highly upregulated in group 3 MB cell lines, patient-derived xenografts, and primary MBs compared to other MB sub-groups as assessed by qRT-PCR, RNA-seq, and RNA fluorescence in situ hybridization (FISH). Depletion of lnc-HLX-2-7 with antisense oligonucleotides or CRISPR/Cas9 significantly reduced cell proliferation and 3D colony formation and induced apoptosis. lnc-HLX-2-7-deleted D425 Med cells injected into mouse cerebella produced smaller tumors than those derived from parental cells. Pathway analysis revealed that lnc-HLX2-7 modulated oxidative phosphorylation, mitochondrial dysfunction, and sirtuin signaling pathways. The MYC oncogene regulated lnc-HLX-2-7, and the small molecule BET-bromodomain (BRD4) inhibitor JQ1 reduced lnc-HLX2-7 expression.Conclusionslnc-HLX-2-7 is oncogenic in MB and represents a promising novel molecular marker and a potential therapeutic target in group 3 MBs in children.Key pointslnc-HLX-2-7 is highly upregulated in group 3 medulloblastomas compared to other sub-groups.In vitro and in vivo studies strongly support an oncogenic role for lnc-HLX2-7 in group 3 medulloblastoma.lnc-HLX-2-7 may be a novel biomarker and a potential therapeutic target in group 3 medulloblastoma.Importance of the studyGroup 3 medulloblastomas are associated with poor clinical outcomes, are difficult to subtype clinically, and their biology is poorly understood. In an effort to address these problems, we identified a group 3-specific long non-coding RNA, lnc-HLX-2-7, in an in silico analysis of 175 medulloblastomas and confirmed its expression in group 3 medulloblastoma cell lines, patient-derived xenografts, and FFPE samples. CRISPR/Cas9 deletion and antisense oligonucleotide knockdown of lnc-HLX-2-7 significantly reduced cell growth and 3D colony formation and induced apoptosis. Deletion of lnc-HLX-2-7 in cells injected into mouse cerebellums reduced tumor growth compared to parental cells, and RNA sequencing of these tumors revealed lnc-HLX-2-7-associated modulation of cell viability and cell death signaling pathways. The oncogene MYC regulates lnc-HLX-2-7, and its expression can be controlled by the BET-bromodomain (BRD4) inhibitor JQ1. lnc-HLX-2-7 is a candidate biomarker and a potential therapeutic target in group 3 medulloblastomas in children.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Constanza Chialva ◽  
Thomas Blein ◽  
Martin Crespi ◽  
Diego Lijavetzky

AbstractCarrot (Daucus carota L.) is one of the most cultivated vegetable in the world and of great importance in the human diet. Its storage organs can accumulate large quantities of anthocyanins, metabolites that confer the purple pigmentation to carrot tissues and whose biosynthesis is well characterized. Long non-coding RNAs (lncRNAs) play critical roles in regulating gene expression of various biological processes in plants. In this study, we used a high throughput stranded RNA-seq to identify and analyze the expression profiles of lncRNAs in phloem and xylem root samples using two genotypes with a strong difference in anthocyanin production. We discovered and annotated 8484 new genes, including 2095 new protein-coding and 6373 non-coding transcripts. Moreover, we identified 639 differentially expressed lncRNAs between the phenotypically contrasted genotypes, including certain only detected in a particular tissue. We then established correlations between lncRNAs and anthocyanin biosynthesis genes in order to identify a molecular framework for the differential expression of the pathway between genotypes. A specific natural antisense transcript linked to the DcMYB7 key anthocyanin biosynthetic transcription factor suggested how the regulation of this pathway may have evolved between genotypes.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Lu ◽  
Xinglei Qin ◽  
Yajun Zhou ◽  
Gang Li ◽  
Zhaoyang Liu ◽  
...  

AbstractGemcitabine is the first-line chemotherapy drug for cholangiocarcinoma (CCA), but acquired resistance has been frequently observed in CCA patients. To search for potential long noncoding RNAs (lncRNAs) involved in gemcitabine resistance, two gemcitabine resistant CCA cell lines were established and dysregulated lncRNAs were identified by lncRNA microarray. Long intergenic non-protein coding RNA 665 (LINC00665) were found to rank the top 10 upregulated lncRNAs in our study, and high LINC00665 expression was closely associated with poor prognosis and chemoresistance of CCA patients. Silencing LINC00665 in gemcitabine resistant CCA cells impaired gemcitabine tolerance, while enforced LINC00665 expression increased gemcitabine resistance of sensitive CCA cells. The gemcitabine resistant CCA cells showed increased EMT and stemness properties, and silencing LINC00665 suppressed sphere formation, migration, invasion and expression of EMT and stemness markers. In addition, Wnt/β-Catenin signaling was activated in gemcitabine resistant CCA cells, but LINC00665 knockdown suppressed Wnt/β-Catenin activation. B-cell CLL/lymphoma 9-like (BCL9L), the nucleus transcriptional regulators of Wnt/β-Catenin signaling, plays a key role in the nucleus translocation of β-Catenin and promotes β-Catenin-dependent transcription. In our study, we found that LINC00665 regulated BCL9L expression by acting as a molecular sponge for miR-424-5p. Moreover, silencing BCL9L or miR-424-5p overexpression suppressed gemcitabine resistance, EMT, stemness and Wnt/β-Catenin activation in resistant CCA cells. In conclusion, our results disclosed the important role of LINC00665 in gemcitabine resistance of CCA cells, and provided a new biomarker or therapeutic target for CCA treament.


Sign in / Sign up

Export Citation Format

Share Document