scholarly journals Evidence of the Physical Interaction between Rpl22 and the Transposable Element Doc5, a Heterochromatic Transposon of Drosophila melanogaster

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1997
Author(s):  
Maria Francesca Berloco ◽  
Crescenzio Francesco Minervini ◽  
Roberta Moschetti ◽  
Antonio Palazzo ◽  
Luigi Viggiano ◽  
...  

Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 759
Author(s):  
Gaku Yamanaka ◽  
Fuyuko Takata ◽  
Yasufumi Kataoka ◽  
Kanako Kanou ◽  
Shinichiro Morichi ◽  
...  

Pericytes are a component of the blood–brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.


Author(s):  
Waill Elkhateeb ◽  
Ghoson Daba

Abstract. Elkhateeb WA, Daba GM. 2020. Review: The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi J Nat Prod Biochem 18: 70-77. As a traditional medicine, Cordyceps has long been used in Asian nations for maintaining vivacity and boosting immunity. Numerous publications on various bioactivities of Cordyceps have been investigated in both in-vitro as well as in vivo studies. Nevertheless, the role of Cordyceps is still arguable whether it acts as food supplement for health benefits or a real healing drug that can be prescribed in medicine. The Cordyceps industry has developed greatly and offers thousands of products, commonly available in a global marketplace. In this review, focus will be on introducing the ecology of Cordyceps and their classification. Moreover, elucidation of the richness of extracts originated from this mushroom in nutritional components was presented, with description of the chemical compounds of Cordyceps and its well-known compounds such as cordycepin, and cordycepic acid. Furthermore, highlights on natural growth and artificial cultivation of famous Cordyceps species were presented. The health benefits and reported bioactivities of Cordyceps species as promising antimicrobial, anticancer, hypocholesterolemic, antioxidant, antiviral, anti-inflammatory, organ protective agent, and enhancer for organ function were presented.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


2020 ◽  
Vol 13 ◽  
Author(s):  
Jingqi Wang ◽  
Lou Fourriere ◽  
Paul A. Gleeson

A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and neurological disorders. Given the physical distance from the cell body to the distal sites of the axon and dendrites, transport of newly synthesized membrane proteins from the central cell body to their functional destination at remote, distal sites represents a conundrum. With the identification of secretory organelles in dendrites, including endoplasmic reticulum (ER) and Golgi outposts (GOs), recent studies have proposed local protein synthesis and trafficking distinct from the conventional anterograde transport pathways of the cell body. A variety of different model organisms, including Drosophila, zebrafish, and rodents, have been used to probe the organization and function of the local neuronal secretory network. Here, we review the evidence for local secretory trafficking pathways in dendrites in a variety of cell-based neuronal systems and discuss both the similarities and differences in the organization and role of the local secretory organelles, especially the GOs. In addition, we identify the gaps in the current knowledge and the potential advances using human induced pluripotent stem cells (iPSCs) in defining local membrane protein trafficking in human neurons and in understanding the molecular basis of neurological diseases.


2019 ◽  
Vol 11 (10) ◽  
pp. 880-885 ◽  
Author(s):  
Hendrik Täuber ◽  
Stefan Hüttelmaier ◽  
Marcel Köhn

Abstract A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.


2008 ◽  
Vol 411 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Masato Iida ◽  
Masao Matsuda ◽  
Hideya Komatani

The Plk (polo-like kinase) family is involved in cell-cycle machinery. Despite the possible overlapping involvement of Plk1 and Plk3 in cell-cycle distribution, the precise role of each Plk might be different. To investigate mechanisms that may differentiate their physiological roles, we compared the substrate specificities of Plk1 and Plk3 using synthetic peptides. Among these substrate peptides, topoisomerase IIα EKT1342DDE-containing synthetic peptide was strongly phosphorylated by Plk3 but not by Plk1. By modulating the topoisomerase IIα peptide, we identified residues at positions +1, +2 and +4 as determinants of differential substrate recognition between Plk1 and Plk3. Acidic residues at positions +2 and +4 appear to be a positive determinant for Plk3 but not Plk1. Variation at position +1 appears to be tolerated by Plk3, while a hydrophobic residue at +1 is critical for Plk1 activity. The direct phosphorylation of Thr1342 of topoisomerase IIα by Plk3 was demonstrated with an in vitro kinase assay, and overexpression of Plk3 induced the phosphorylation of Thr1342 in cellular topoisomerase IIα. Furthermore, the physical interaction between Plk3 and topoisomerase IIα was also demonstrated in cells in addition to phosphorylation. These data suggest that topoisomerase IIα is a novel physiological substrate for Plk3 and that Plk1 and Plk3 play different roles in cell-cycle regulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jacqueline Alves Leite ◽  
Anne Kaliery De Abreu Alves ◽  
José Guilherme Marques Galvão ◽  
Mariana Pires Teixeira ◽  
Luiz Henrique Agra Cavalcante-Silva ◽  
...  

Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α(57%) and IL-1β(58%) levels, without interfering with IL-6 and IL-10. Also,in vitroexperiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance.


2009 ◽  
Vol 30 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Gianluca Tell ◽  
David M. Wilson ◽  
Chow H. Lee

ABSTRACT Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is known to be involved in base excision DNA repair, acting as the major abasic endonuclease; the protein also functions as a redox coactivator of several transcription factors that regulate gene expression. Recent findings highlight a novel role for APE1 in RNA metabolism. The new findings are as follows: (i) APE1 interacts with rRNA and ribosome processing protein NPM1 within the nucleolus; (ii) APE1 interacts with proteins involved in ribosome assembly (i.e., RLA0, RSSA) and RNA maturation (i.e., PRP19, MEP50) within the cytoplasm; (iii) APE1 cleaves abasic RNA; and (iv) APE1 cleaves a specific coding region of c-myc mRNA in vitro and influences c-myc mRNA level and half-life in cells. Such findings on the role of APE1 in the posttranscriptional control of gene expression could explain its ability to influence diverse biological processes and its relocalization to cytoplasmic compartments in some tissues and tumors. In addition, we propose that APE1 serves as a “cleansing” factor for oxidatively damaged abasic RNA, establishing a novel connection between DNA and RNA surveillance mechanisms. In this review, we introduce questions and speculations concerning the role of APE1 in RNA metabolism and discuss the implications of these findings in a broader evolutionary context.


2006 ◽  
Vol 396 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Ferenc Marincs ◽  
Iain W. Manfield ◽  
Jonathan A. Stead ◽  
Kenneth J. Mcdowall ◽  
Peter G. Stockley

We have used DNA arrays to investigate the effects of knocking out the methionine repressor gene, metJ, on the Escherichia coli transcriptome. We assayed the effects in the knockout strain of supplying wild-type or mutant MetJ repressors from an expression plasmid, thus establishing a rapid assay for in vivo effects of mutations characterized previously in vitro. Repression is largely restricted to known genes involved in the biosynthesis and uptake of methionine. However, we identified a number of additional genes that are significantly up-regulated in the absence of repressor. Sequence analysis of the 5′ promoter regions of these genes identified plausible matches to met-box sequences for three of these, and subsequent electrophoretic mobility-shift assay analysis showed that for two such loci their repressor affinity is higher than or comparable with the known metB operator, suggesting that they are directly regulated. This can be rationalized for one of the loci, folE, by the metabolic role of its encoded enzyme; however, the links to the other regulated loci are unclear, suggesting both an extension to the known met regulon and additional complexity to the role of the repressor. The plasmid gene replacement system has been used to examine the importance of protein–protein co-operativity in operator saturation using the structurally characterized mutant repressor, Q44K. In vivo, there are detectable reductions in the levels of regulation observed, demonstrating the importance of balancing protein–protein and protein–DNA affinity.


Sign in / Sign up

Export Citation Format

Share Document