scholarly journals Carbon and Nitrogen Dynamics Affected by Drip Irrigation Methods and Fertilization Practices in a Pomegranate Orchard

Horticulturae ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 77 ◽  
Author(s):  
Rebecca Tirado-Corbalá ◽  
Suduan Gao ◽  
James E. Ayars ◽  
Dong Wang ◽  
Claude J. Phene ◽  
...  

Knowledge of carbon (C) and nitrogen (N) dynamics under different irrigation practices in pomegranate orchards is novel and essential to develop sustainable production systems. The aim of this research was to determine the effect of high-frequency drip irrigation and different rates of N fertilizer on C and N distribution in the soil and N uptake by pomegranate fruit and leaves. The main treatments were surface drip irrigation (DI) and subsurface drip irrigation (SDI), and the sub-treatments used were three initial N rates (N1, N2, and N3). As trees grew larger, the N application rate increased. From 2013–2015, trees received the following rates of N: 62–113 (N1), 166–263 (N2), or 244–342 kg/ha (N3). Soil and leaf total C (TC) and N (TN), soil dissolved organic C (DOC), soil nitrate (NO3−), and total N uptake by fruit were evaluated between 2012 and 2015. Soil samples were collected to 120 cm depth at 15 cm increments. DI resulted in higher concentrations of TN, TC, NO3−, and DOC in the upper 75 cm depth than SDI. The N3 treatment resulted in higher concentrations of TN, TC, NO3−, and DOC under both DI and SDI. Neither DI nor SDI at the N1 or N2 levels increased TN and NO3− concentrations at 105–120 cm soil depth, indicating reduced leaching risk using high-frequency drip irrigation. Higher N uptake by fruit was observed in SDI than in DI in 2014 and 2015, and in N2 and N3 treatments compared with N1 in 2013 and 2014. The data indicate that the application rate at 166–263 kg/ha (N2) provided sufficient N for a 4–6-year-old pomegranate orchard and that high-frequency SDI is a promising technology for achieving higher N use efficiency and minimizing leaching loss of NO3− and DOC.

1997 ◽  
Vol 129 (2) ◽  
pp. 187-191 ◽  
Author(s):  
J. A. HOUNTIN ◽  
D. COUILLARD ◽  
A. KARAM

Excessive applications of liquid pig manure (LPM) could result in nutrient accumulation in the soil, thereby increasing the potential for plant nutrient losses through movement in groundwater. The objective of this work was to measure the concentrations of total carbon (Ct), total nitrogen (Nt), total phosphorus (Pt) and Mehlich-3 extractable-P (PM3) with depth in a Le Bras silty loam soil growing maize (Zea maize L.) under reduced tillage conditions. The soil was fertilized annually with various rates of LPM (0, 30, 60, 90 and 120 m3/ha) in four completely randomized blocks since 1979. In autumn 1992, twenty soil plots were sampled in increments of 20 cm to a depth of 1·0 m and analysed for total C, total N, total P and Mehlich-3 extractable-P. LPM application rate (R), soil depth (D) and the interaction R × D had highly significant (P<0·001) linear effects on Ct, Nt, Pt and PM3 concentrations throughout the 100-cm depth profiles. At all depths, Ct, Nt, Pt and PM3 contents increased with increasing rates of LPM application. The zone of maximum accumulation of Ct, Nt, Pt and PM3 concentrations occurred at the first 0–40 cm depth. A significant relationship was found between soil organic matter and Nt, Pt and PM3. Differences in N and P concentrations between manure rates are due to manure and maize. The increase in PM3 was generally greater for soil samples with high Pt content. Results from this study indicate that long-term application of a high rate of LPM leads to greater total C, N and P concentrations in the soil profile.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 820 ◽  
Author(s):  
K. A. Conrad ◽  
R. C. Dalal ◽  
D. E. Allen ◽  
R. Fujinuma ◽  
Neal W. Menzies

Quantifying the size and turnover of physically uncomplexed soil organic matter (SOM) is crucial for the understanding of nutrient cycling and storage of soil organic carbon (SOC). However, the C and nitrogen (N) dynamics of SOM fractions in leucaena (Leucaena leucocephala)–grass pastures remains unclear. We assessed the potential of leucaena to sequester labile, free light fraction (fLF) C and N in soil by estimating the origin, quantity and vertical distribution of physically unprotected SOM. The soil from a chronosequence of seasonally grazed leucaena stands (0–40 years) was sampled to a depth of 0.2m and soil and fLF were analysed for organic C, N and δ13C and δ15N. On average, the fLF formed 20% of SOC and 14% of total N stocks in the upper 0.1m of soil from leucaena rows and showed a peak of fLF-C and fLF-N stocks in the 22-year-stand. The fLF δ13C and fLF δ15N values indicated that leucaena produced 37% of fLF-C and 28% of fLF-N in the upper 0.1m of soil from leucaena rows. Irrespective of pasture type or soil depth, the majority of fLF-C originated from the accompanying C4 pasture-grass species. This study suggests that fLF-C and fLF-N, the labile SOM, can form a significant portion of total SOM, especially in leucaena–grass pastures.


1997 ◽  
Vol 48 (5) ◽  
pp. 635 ◽  
Author(s):  
C. J. Birch ◽  
S. Fukai ◽  
I. J. Broad

The effect of nitrogen application on the grain yield and grain protein concentration of barley was studied in 13 field trials covering a wide range of soil N conditions over 4 years at locations in south-eastern Queensland. The main objectives of the study were to quantify the response of barley to N application rate over a range of environmental conditions, and to explain the response in terms of soil mineral N, total N uptake, and N distribution in the plants. Barley made efficient use of N (60 kg grain/kg N) until grain yield reached 90% of maximum yield. Grain protein concentration did not increase to levels unacceptable for malting purposes until grain yield exceeded 85–90% of maximum yield. Nitrogen harvest index was generally high (above 0·75), and did not decrease until the total N supply exceeded that necessary for maximum grain yield. Rates of application of N for malting barley should be determined on the basis of soil analysis (nitrate-N) to 1 m depth and 90% of expected maximum grain yield, assuming that 17 kg N is taken up per tonne of grain produced. It can further be assumed that the crop makes full use of the nitrate N to 1 m present at planting, provided the soil is moist to 1 m. A framework relating grain yield to total N uptake, N harvest index, and grain N concentration is presented. Further, total N uptake of fertilised barley is related to N uptake without fertiliser, fertiliser application rate, and apparent N recovery. The findings reported here will be useful in the development of barley simulation models and decision support packages that can be used to aid N management.


2020 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Reinhard Well ◽  
Birgit Pfeiffer ◽  
Klaus Dittert ◽  
Sebastian Floßmann ◽  
...  

&lt;p&gt;Growing plants affect soil moisture, mineral N and organic C (C&lt;sub&gt;org&lt;/sub&gt;) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (C&lt;sub&gt;org&lt;/sub&gt; and NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; availability for denitrification leading to increased N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher C&lt;sub&gt;org&lt;/sub&gt; availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N&lt;sub&gt;2&lt;/sub&gt;O/(N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt;) ratios.&lt;/p&gt;&lt;p&gt;We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg&lt;sup&gt;-1&lt;/sup&gt; (Ca(&lt;sup&gt;15&lt;/sup&gt;NO&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;, 60 at%), and the &lt;sup&gt;15&lt;/sup&gt;N tracer method was applied to estimate plant N uptake, N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions. To link denitrification with available C in the rhizosphere, &lt;sup&gt;13&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; pulse labeling (5 g Na&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;13&lt;/sup&gt;CO&lt;sub&gt;3&lt;/sub&gt;, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO&lt;sub&gt;2&lt;/sub&gt; evolving from soil was trapped in NaOH for &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C analyses, and gas samples were taken for analysis of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; from the headspace above the soil surface every 12 h.&lt;/p&gt;&lt;p&gt;Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt; fluxes, cumulative N emissions, and N&lt;sub&gt;2&lt;/sub&gt;O production pathways. In addition, total N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt; emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (&lt;sup&gt;13&lt;/sup&gt;C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher C&lt;sub&gt;org&lt;/sub&gt; availability in pots with large root systems did not lead to higher denitrification rates as NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; was limited due to plant uptake. In conclusion, plant growth controlled water and NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; uptake and, subsequently, formation of anaerobic hotspots for denitrification.&lt;/p&gt;


2018 ◽  
Vol 34 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Steven R. Evett ◽  
Gary W. Marek ◽  
Paul D. Colaizzi ◽  
Brice B. Ruthardt ◽  
Karen S. Copeland

Abstract. Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions of surface water and energy balances, soil physics, plant growth, and biophysics that determine crop ET in response to rapid microclimate dynamics. When crops are irrigated with sprinkler systems or other rapid additions of water, the irrigation event is typically short enough that not much ET data are compromised by the lysimeter mass change due to irrigation. In contrast, subsurface drip irrigation (SDI) systems may take many hours to apply an irrigation, during which time the lysimeter mass change is affected by both ET rate and irrigation application rate. Given that irrigation application rate can be affected by pressure dynamics of the irrigation system, emitter clogging and water viscosity changes with temperature over several-hour periods, it can be difficult to impossible to separate the ET signal from the interference of the irrigation application. The inaccuracies in the data can be important, particularly for comparisons of sprinkler and SDI systems, since they are of the order of 8 to 10% of daily ET. We developed an SDI irrigation system to apply irrigations of up to 50 mm to large weighing lysimeters while limiting the period of lysimeter mass change due to irrigation delivery to approximately ten minutes by storing the water needed for irrigation in tanks suspended from the lysimeter weighing system. The system applied water at the same rate as the SDI system in the surrounding field, allowed irrigation over periods of any duration, but often exceeding 12 h, without directly affecting lysimeter mass change and the accuracy of ET rate determinations, and allowed irrigation overnight without compromising lysimeter daily ET measurements. Errors in lysimeter ET measurements using the previous SDI system, which was directly connected to the field irrigation system, were up to 10% of daily ET compared with negligible error using the new system. Errors using the previous, directly connected, SDI system varied over time due to variable system pressure, and possibly due to water temperature (viscosity) changes and emitter clogging. With the new system, all of the water transferred to the lysimeter weighing system was eventually applied by the SDI system regardless of temperature, pressure, or emitter clogging. Differences between planned and applied irrigation depth were less than 2% over the irrigation season. Keywords: Evapotranspiration, ET, Subsurface drip irrigation, SDI, Weighing lysimeter.


2008 ◽  
Vol 35 (2) ◽  
pp. 86-91 ◽  
Author(s):  
Ronald B. Sorensen ◽  
Christopher L. Butts

Abstract A 2-year study (2004 and 2005) was conducted where gypsum was applied to four peanut (Arachis hypogaea L.) cultivars and irrigated with subsurface drip to determine pod yield and mineral concentration of peanut plants and kernels. Gypsum rates were none, 560 and 1120 kg/ha. Peanut cultivars were C99R, Georgia Green (GG), NCV-11 (NCV), and GA-O2C (O2C). Irrigation was applied daily with subsurface drip irrigation except when precipitation exceeded the estimated daily water requirement. Average soil Ca and S concentrations increased as gypsum was applied, 5% and 20%, respectively, compared with the non-treated control. The average soil calcium to potassium (Ca∶K) ratio increased to 9.8∶1 compared with 7.6∶1 prior to applying calcium. When averaged across calcium rates, peanut leaves had 3 and 14 times higher calcium and 1.4 times higher S concentrations compared with pegs and pods, respectively. The cultivars GG and NCV had the same pod yield. Cultivars C99R and O2C had the same yield as NCV but were less than GG. Germination rates were higher when gypsum was added compared to the non-treated control and with cultivars C99R and O2C. There was no difference in vigor by gypsum application rate. Kernel Ca concentration was higher with the addition of gypsum compared to the non-treated control. Cold test germination seed vigor increased with C99R and O2C compared with GG and NCV.


Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 685 ◽  
Author(s):  
PE Bacon ◽  
LG Lewin ◽  
JW McGarity ◽  
EH Hoult ◽  
D Alter

The fate of 15N-labelled fertilizer applied to rice (Oryza sativa L) was studied in microplots established within two field experiments comprising a range of stubble levels, stubble management techniques, N application rates and times. The first experiment investigated uptake of soil and fertilizer N in plots where application of 0 or 100 kg N ha-1 to the previous rice crop had produced 11.5 and 16.1 t ha-1 of stubble respectively. The stubble was then treated in one of four ways-burn (no till); burn then cultivated; incorporated in autumn or incorporated at sawing. Microplots within these large plots received 60 kg ha-1 of 5% 15N enriched urea at sowing, just prior to permanent flood (PF), or just after panicle initiation (PI) of the second crop. The second experiment was undertaken within a field in which half of the plots had stubble from the previous three rice crops burned, while the other plots had all stubble incorporated. In the fourth successive rice crop, the two stubble management systems were factorially combined with three N rates (0, 70 or 140 kg N ha-1) and three application times (PF, PI or a 50 : 50 split between PF and PI). Nitrogen uptake and retention in the soil were studied within 15N-labelled microplots established within each of these large plots. Only 4% of the 15N applied at sowing in the first experiment was recovered in the rice crop, while delaying N application to PF or PI increased this to an average of 20% and 44% respectively over the two experiments. The doubling of N application rate doubled fertilizer N uptake and also increased uptake of soil N at maturity by 12 kgN ha-1. Three years of stubble incorporation increased average uptake of fertilizer and soil N in the second experiment by 5 and 12 kg N ha-1 respectively. In both experiments, the soil was the major source of N, contributing 66-96% of total N uptake. On average, in the fourth crop, 20% of fertilizer N was in the grain, 12% in the straw and 3% in the roots, while 23% was located in the top 300 mm of soil. A further 3% was in the soil below 300 mm. The remaining 39% was lost, presumably by denitrification.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
J. Ryschawy ◽  
M. A. Liebig ◽  
S. L. Kronberg ◽  
D. W. Archer ◽  
J. R. Hendrickson

Integrated crop-livestock systems can have subtle effects on soil quality over time, particularly in semiarid regions where soil responses to management occur slowly. We tested if analyzing temporal trajectories of soils could detect trends in soil quality data which were not detected using traditional statistical and index approaches. Principal component and cluster analyses were used to assess the evolution in ten soil properties at three sampling times within two production systems (annually cropped, perennial grass). Principal component 1 explained 33% of the total variance of the complete dataset and corresponded to gradients in extractable N, available P, and C : N ratio. Principal component 2 explained 25.4% of the variability and corresponded to gradients of soil pH, soil organic C, and total N. While previous analyses found no differences in Soil Quality Index (SQI) scores between production systems, annually cropped treatments and perennial grasslands were clearly distinguished by cluster analysis. Cluster analysis also identified greater dispersion between plots over time, suggesting an evolution in soil condition in response to management. Accordingly, multivariate statistical techniques serve as a valuable tool for analyzing data where responses to management are subtle or anticipated to occur slowly.


1991 ◽  
Vol 12 (3) ◽  
Author(s):  
C.J. Phene ◽  
K.R. Davis ◽  
R.B. Hutmacher ◽  
B. Bar-Yosef ◽  
D.W. Meek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document