scholarly journals Effects of Foliar Application of Gibberellic Acid on the Salt Tolerance of Tomato and Sweet Pepper Transplants

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 93
Author(s):  
Alessandro Miceli ◽  
Filippo Vetrano ◽  
Alessandra Moncada

Seed germination and early seedling growth are the plant growth stages most sensitive to salt stress. Thus, the availability of poor-quality brackish water can be a big limiting factor for the nursery vegetable industry. The exogenous supplementation of gibberellic acid (GA3) may promote growth and vigor and counterbalance salt stress in mature plants. This study aimed to test exogenous supplementation through foliar spray of 10−5 M GA3 for increasing salt tolerance of tomato and sweet pepper seedlings irrigated with increasing salinity (0, 25, and 50 mM NaCl during nursery growth. Tomato and sweet pepper seedlings suffered negative effects of salinity on plant height, biomass, shoot/root ratio, leaf number, leaf area, relative water content, and stomatal conductance. The foliar application of GA3 had a growth-promoting effect on the unstressed tomato and pepper seedlings and was successful in increasing salinity tolerance of tomato seedlings up to 25 mM NaCl and up to 50 mM NaCl in sweet pepper seedlings. This treatment could represent a sustainable strategy to use saline water in vegetable nurseries limiting its negative effect on seedling quality and production time.

1970 ◽  
Vol 28 (3) ◽  
pp. 341-362
Author(s):  
A.M. Esan ◽  
C.O. Olaiya ◽  
L.O. Anifowose ◽  
I.O. Lana ◽  
B.V. Ailenokhuoria ◽  
...  

Salinity stress is a limiting factor that affects attainment of optimal yield of many vegetable crops at various growth stages in many arid and semi-arid parts of sub-Saharan Africa. The objective of this study was to explore salt tolerance of tomato (Solanum lycopersicum L.) genotypes under the influence of gibberellic acid (GA3) and Bacillus subtilis under screen house conditions. Tomato seeds were pre-soaked with 0, 0.4, 0.5 or 0.6 mM concentrations of GA3 and control in distilled water, respectively; for 12 hr at room temperature. The seeds were germinated in a screen house in 10 kg of soil contained 0, 100, or 200 mM NaCl treatment in polyethene bags. After two weeks of seed germination, the seedlings were inoculated with B. subtilis with the exception of controls. Results revealed that the single or combined treatments of GA3 (at different concentrations) and Bacillus subtilis significantly (P<0.05) increased photosynthetic pigments, and enhanced the concentrations of potassium, calcium, magnesium and phosphorus ions in the salt-stressed tomato. Both tomato genotypes showed low concentrations of sodium ions at all levels of gibberellic acid with Bacillus subtilis. Also, there were significant (P < 0.05) increases in the compatible solutes, antioxidant enzymes activity and antioxidant potential of salt-stressed tomato genotypes, in the combined treatments of GA3 and Bacillus subtilis. Tomato genotypes treated with GA3 and Bacillus subtilis, showed greater salt-tolerance even at high levels of salinity, than single treatment of either GA3 or Bacillus subtilis. Based on these findings, the genotypes are suitable for future breeding programmes to achieve optimal crop yield in saline conditions.


2021 ◽  
Author(s):  
Zihui Shen ◽  
Xiaozhen Pu ◽  
Shaoming Wang ◽  
Xiuxiu Dong ◽  
Xiaojiao Cheng ◽  
...  

Abstract Silicon effectively alleviates the damage caused by salt stress in plants and can improve plant salt tolerance. However, the details of the mechanism by which silicon improves salt tolerance of liquorice are limited, and the effects of foliar application of silicon on different liquorice species under salt stress are not known. Here, the effects of foliar spray of silicon on the growth, physiological and biochemical characteristics, and ion balance of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. were investigated. High salt stress resulted in the accumulation of a large amount of Na+, decreased photosynthetic pigment content, perturbed ion homeostasis, and eventually inhibited the both liquorice species growth. These effects were more pronounced in G. uralensis, as G. inflata is more salt tolerant than G. uralensis. Foliar spraying of silicon effectively reduced the decomposition of photosynthetic pigments, improved gas exchange parameters, and promoted photosynthesis. It also effectively inhibited lipid peroxidation and electrolyte leakage and enhanced osmotic adjustment of plants. Further, silicon application increased the K+ concentration, reduced Na+ absorption, transport and accumulation in the plants. The protective effects of silicon were more pronounced in G. uralensis than those in G. inflata. In conclusion, silicon reduces Na+ absorption, improves ion balance, and alleviates the negative effects of salt stress in the two liquorice species studied, but the effect is liquorice species-dependent. These findings may inform novel strategies for protecting liquorice plants against salt stress and also provide a theoretical basis for the evaluation of salt tolerance and the scientific cultivation of liquorice.


2010 ◽  
Vol 2 (2) ◽  
pp. 98-102 ◽  
Author(s):  
Mohamed M. EL FOULY ◽  
Zeinab M. MOBARAK ◽  
Zeinab A. SALAMA

Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15%) were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm) were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.


2020 ◽  
Author(s):  
Pan Zhang ◽  
Tianqi Duo ◽  
Fengdan Wang ◽  
Xunzhong Zhang ◽  
Zouzhuan Yang ◽  
...  

Abstract Background: Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here, we investigated the physiological responses and transcriptome changes in the roots of two switchgrass genotypes under alkaline salt stress.Results: Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1,480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1,718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes.Conclusions: The alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene transcription and regulation induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm.


Author(s):  
Evandro Manoel da Silva ◽  
Francisco Hélio Dantas Lacerda ◽  
Aldair de Souza Medeiros ◽  
Leandro de Pádua Souza ◽  
Francisco Hevilásio Freire Pereira

<p>A aplicação exógena de H<sub>2</sub>O<sub>2</sub> tem demonstrado eficiência na aclimatação das plantas aos estresses bióticos e abióticos devido estimular a ativação do sistema de defesa antioxidativo. Neste sentido, objetivou-se com o trabalho avaliar a influência do método de aplicação de diferentes concentrações de H<sub>2</sub>O<sub>2 </sub>sobre o crescimento inicial de plantas de milho irrigadas água salina. O experimento foi conduzido em ambiente protegido, com os tratamentos dispostos em delineamento inteiramente casualizado, em esquema fatorial 5 x 2, correspondente as concentrações de peróxido de hidrogênio (H<sub>2</sub>O<sub>2</sub>) de 0; 5; 10; 15 e 20 µmol L<sup>-1 </sup>aplicados na semeadura via água de irrigação e, pulverização foliar aos 15 dias após a semeadura (DAS), com quatro repetições e unidade experimental constituída por um vaso de 3 L contendo duas plantas de milho híbrido 4051. As plantas foram irrigadas com água de CE de 2,0 dS m<sup>-1</sup>. As 28 DAS verificou-se que a aplicação de H<sub>2</sub>O<sub>2 </sub>na semeadura e através de pulverização foliar promove aclimatação de plantas de milho à salinidade da água de irrigação, aumentando a tolerância ao estresse salino. O maior crescimento inicial do milho é obtido nas concentrações de H<sub>2</sub>O<sub>2</sub> variando de 7 a 8 µmol L<sup>-1</sup>, sendo mais eficiente a aplicação na semeadura. O pré-tratamento de plantas de milho com H<sub>2</sub>O<sub>2</sub> a partir de 15 µmol L<sup>-1</sup> incrementa o estresse, promovendo maiores danos ao crescimento vegetativo.</p><p align="center"><strong><em>Application methods of different concentrations of H<sub>2</sub>O<sub>2</sub> in maize under salt stress</em></strong></p><p><strong>Abstract</strong><strong>:</strong> Exogenous application of H<sub>2</sub>O<sub>2</sub> has established efficiency in acclimatization of plants to biotic and abiotic stresses due to stimulate the activation of antioxidant defense system. In this context, it was aimed with this work evaluate the effect of application method of different concentrations of H<sub>2</sub>O<sub>2</sub> on initial growth of maize plants irrigated saline water. The experiment was conducted in a greenhouse, with the treatments in a randomized completely design in a factorial 5 x 2 corresponding the hydrogen peroxide concentrations (H<sub>2</sub>O<sub>2</sub>) 0; 5; 10; 15:20 µmol L<sup>-1</sup> applied in sowing by irrigation water and foliar spray at 15 days after sowing (DAS), with four repetitions and experimental unit consisting of vessel a 3 L containing two plants hybrid maize 4051. The plants were irrigated with EC water of 2.0 dS m<sup>-1</sup>. The 28 DAS  it was found what the application H<sub>2</sub>O<sub>2</sub> at sowing and foliar spraying promote acclimatization of maize plants at salinity irrigation water, increasing tolerance to salt stress.  The more initial growth of maize is obtained in H<sub>2</sub>O<sub>2</sub> concentrations ranging from 7 to 8 µmol L<sup>-1</sup>, being more efficient the application at sowing. The pretreatment of maize plants with H<sub>2</sub>O<sub>2</sub> from 15 µmol L<sup>-1</sup> increasing stress, promoting further damage to vegetative growth.</p>


HortScience ◽  
2015 ◽  
Vol 50 (10) ◽  
pp. 1518-1523 ◽  
Author(s):  
Shanshan Sun ◽  
Mengying An ◽  
Liebao Han ◽  
Shuxia Yin

Perennial ryegrass (Lolium perenne L.) is a widely used turfgrass. In this study, the effect of exogenously applied 24-epibrassinolide (EBR) on salt stress tolerance of perennial ryegrass was investigated. The results indicated that pretreatment with four concentrations of EBR (0, 0.1, 10, 1000 nM) improved salt tolerance of perennial ryegrass. Exogenous EBR treatment decreased electrolyte leakage (EL), malondialdehyde (MDA), and H2O2 contents and enhanced the leaf relative water content (RWC), proline, soluble sugar, and soluble protein content under salt stress condition. Meanwhile, EBR reduced the accumulation of Na+ and increased K+, Ca2+, and Mg2+ contents in leaves after salt treatment. Moreover, EBR pretreatment also increased superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activity, as well as ascorbic acid (AsA) and glutathione contents. These results suggested that EBR improved salt tolerance by enhancing osmotic adjustment and antioxidant defense systems in perennial ryegrass.


Author(s):  
E. Ajay Kumar ◽  
K. Surekha ◽  
K. Bhanu Rekha ◽  
S. Harish Kumar Sharma

A field experiment was conducted during Kharif 2018 at College Farm, College of Agriculture, PJTSAU to evaluate the effect of various sources of zinc and iron on grain yield, nutrient uptake and grain quality parameters of finger millet. The experiment was laid out in a randomized block design with 14 treatments and replicated thrice.The results revealed that application of different Zinc and iron sources at different rates significantly influenced the grain yield, nutrient (N, P and K) uptake and grain quality parameters (protein and calcium content) of finger millet. Highest grain yield (3653 kg ha-1), protein (11.25%) and calcium content (2.33%) in grain were obtained in the treatment receiving RDF + foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with treatment receiving RDF + foliar application of Fe-humate twice at 30 and 60 DAS (3612 kg ha-1, 10.90% and 2.0%) and the lowest grain yield (1995 kg ha-1), (6.25%) and calcium content (1.10%) were recorded with application of RDF alone. The nutrient uptake (N, P, K and Fe) at all the crop growth stages was significantly higher with the treatment receiving RDF (60:40:30 kg N,P2O5 and K2O kg ha-1) + foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with treatment receiving RDF+ foliar application of Fe-humate twice at 30 and 60 DAS. Highest iron uptake was recorded in treatment receiving RDF+foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with T8, T14 treatments.The highest nutrient uptake of Zinc was obtained in treatment receiving RDF + Zn Humate foliar spray @ 0.25% twice at 30 and 60 days after sowing which was on par with treatment receiving RDF + Zn Humate soil  application. Contrary to the grain yield, nutrient uptake, protein and calcium content there were no significant differences between treatments with respect to Zn, Fe and carbohydrate content in grain.


2020 ◽  
Vol 01 (01) ◽  
pp. 05-13
Author(s):  
M. Hasan ◽  
M. B. Akter ◽  
M. M. Karim ◽  
F. Yasmine ◽  
A. K. Hasan

The experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, to explore the growth and yield performance of boro rice cv. BRRI dhan28 is influenced by foliar spray of potassium nitrate (KNO3) at four rice growth stages. The experiment consisted of four doses of KNO3 viz. 0 (Control), 0.25, 0.50 and 1.00 kg ha−1 and applied at four growth stages of rice development viz. at panicle initiation, at ear emergence, at anthesis period and at dough stage. This experiment was carried out in Randomized Complete Block Design (RCBD) with three replications with 10 m2 (4.0 m × 2.5 m) unit plot size and spacing between blocks and unit plots was 1 m and 0.5 m, respectively. Results revealed that foliar application of potassium nitrate at four growth stages significantly affected yield and yield contributing characters of BRRI dhan28. But most of the yield contributing characters did not differ significantly due to the interaction between potassium nitrate and stage of foliar spray. However, the foliar application of KNO3 @ 0.25 kg ha−1 showed the highest yield production (5.86 kg ha−1) while the lowest yield (4.85 kg ha−1) was found in control. Furthermore, better yield performances were recorded when the KNO3 was applied at panicle initiation stage rather than the other four growth stages. The total number of tillers, 1000–grain weight and grain yield, was higher with foliar spraying of a 0.25 kg ha−1 KNO3 at panicle initiation stage. From this experiment, it may be concluded that foliar application of KNO3 affected the yield performances of BRRI dhan28 and 0.25 kg ha−1 KNO3 produced the highest grain yield when applied at panicle initiation stage of boro rice.


2021 ◽  
Vol 42 (4) ◽  
pp. 2253-2270
Author(s):  
Jailton Garcia Ramos ◽  
◽  
Geovani Soares de Lima ◽  
Vera Lucia Antunes de Lima ◽  
Francisco Jean da Silva Paiva ◽  
...  

Irrigation with saline water causes a reduction in yield, especially in semi-arid regions. Cultivation strategies have been developed to mitigate salt stress on plants, such as the use of hydrogen peroxide. The objective of this study was to evaluate the attenuating effect of hydrogen peroxide on the gas exchange and growth of ‘BRS Rubi do Cerrado’ sour passion fruit cultivated under irrigation with saline water. The design was completely randomized in split-plot plots, with water salinity levels ECw (0.6, 1.2, 1.8, 2.4, and 3.0 dS m-1) considered the plots and the concentrations of hydrogen peroxide H2O2 (0, 15, 30, and 45 μM) considered the subplots, with three replicates. Gas exchange (stomatal conductance, transpiration, CO2 assimilation rate, intercellular CO2 concentration, instantaneous water use efficiency, and instantaneous carboxylation efficiency), and absolute and relative growth rates in stem diameter were evaluated. An increase in irrigation water salinity from 0.6 dS m-1 reduced gas exchange, and exogenous application of hydrogen peroxide did not promote a significant effect on gas exchange. However, foliar application of hydrogen peroxide at 15 μM increased the growth of ‘BRS Rubi do Cerrado’ sour passion fruit.


Sign in / Sign up

Export Citation Format

Share Document