scholarly journals The Putative Role of the NAC Transcription Factor EjNACL47 in Cell Enlargement of Loquat (Eriobotrya japonica Lindl.)

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 323
Author(s):  
Qian Chen ◽  
Danlong Jing ◽  
Shuming Wang ◽  
Fan Xu ◽  
Chaoya Bao ◽  
...  

NAC transcription factors (TFs) are plant-specific TFs that play essential roles in plant development; however, the function of NAC TFs in loquat development remains unknown. The natural triploid loquat (Eriobotrya japonica Lindl.), Longquan No.1. B355, has larger organs than its corresponding diploid loquat (B2). Here, we cloned an NAC-like TF (EjNACL47 (NAC-like 47)) from the cDNA of triploid loquat B355 flowers. EjNACL47 has a conserved domain of NAC TFs and is homologous to AtNAC47. Transient expression in tobacco leaves revealed that EjNACL47 localized to the nucleus, and yeast-two-hybrid screening confirmed that the C-terminus displayed transcriptional activity. Interestingly, real-time qRT-PCR indicated that the expression levels of EjNACL47 in leaves and flower organs in triploid loquat (B355) were higher than those in diploid loquat (B2), implying that EjNACL47 might be associated with the larger organ size in B355. Moreover, Arabidopsis lines ectopically expressing EjNACL47 presented obviously larger leaves, flowers, and siliques than the wild-type variant, suggesting that EjNACL47 plays a positive role in Arabidopsis organ enlargement. These results offer insight into the molecular mechanism of NAC TFs involved in regulating organ size in loquat.

2003 ◽  
Vol 23 (10) ◽  
pp. 3623-3635 ◽  
Author(s):  
Vladimir N. Ivanov ◽  
Pablo Lopez Bergami ◽  
Gabriel Maulit ◽  
Taka-Aki Sato ◽  
David Sassoon ◽  
...  

ABSTRACT As revealed by intracellular pools of nonactive Fas (Apo-1), export of Fas to the cell surface is often impaired in human tumors, thereby inactivating Fas ligand-mediated apoptosis. Here, we demonstrate that association with Fas-associated phosphatase 1 (FAP-1) attenuates Fas export to the cell surface. Forced expression of FAP-1 reduces cell surface Fas levels and increases the intracellular pool of Fas within the cytoskeleton network. Conversely, expression of dominant-negative forms of FAP-1, or inhibition of FAP-1 expression by short interfering RNA, efficiently up-regulates surface expression of Fas. Inhibition of Fas surface expression by FAP-1 depends on its association with the C terminus of Fas. Mutation within amino acid 275 results in decreased association with FAP-1 and greater export of Fas to the cell surface in melanomas, normal fibroblasts, or Fas null cells. Identifying the role of FAP-1 in binding to, and consequently inhibition of, Fas export to the cell surface provides novel insight into the mechanism underlying the regulation of Fas trafficking, which is commonly impaired in advanced tumors with FAP-1 overexpression.


2012 ◽  
Vol 57 (4) ◽  
pp. 553-584 ◽  
Author(s):  
Forrest Briscoe ◽  
Chad Murphy

We examine the role of a practice’s opacity (versus transparency) in the interorganizational diffusion of organizational practices. Though the opacity of a practice is typically thought to impede diffusion, a political-cultural approach to institutions suggests that opacity can sometimes play a positive role. Given that adoption decisions are embedded in a web of conflicting interests, transparency may bring negative attention that, when observed by prospective adopters, inhibits them from following suit. Opacity, in contrast, helps avoid that cycle. Using the curtailment of health benefits for retirees among large U.S. employers (1989 to 2009), we compare the diffusion of transparent adoptions (i.e., partial or complete benefit cuts) with opaque adoptions (i.e., spending caps that trigger disenrollment). We find that transparent adoptions reduce subsequent diffusion of the practice to other organizations. This effect is fully mediated by negative media coverage, which is itself conditioned by the presence of opposition from interest groups. Opaque adoptions, in contrast, increase subsequent diffusion to other organizations and are facilitated by the involvement of professional experts. Thus, in addition to providing findings on practice opacity, our study contributes insight into how organizational fields shape diffusion by illuminating the role of third parties in the spread of controversial practices.


2020 ◽  
Vol 185 ◽  
pp. 04026
Author(s):  
Zhi Liu ◽  
Yunqi Liu

Ce modified MnOx-based catalysts have attracted much attention due to its high activity for selective catalytic reduction of NOx by NH3 (NH3-SCR) at low-temperatures. However, the most important role of Ce on the NH3-SCR performance of MnOx-based catalysts has not been confirmed. Herein, the typical Ce-Mn/TiO2 catalyst was synthesized through incipient-wetness impregnation method, the positive role of Ce on Ce-Mn/TiO2 catalyst in the NH3-SCR process was revealed by combining different activity tests (including NO oxidation and NH3 oxidation) and characterizations (including XRD, XPS and He-TPDMS experiments). It was found that the introduction of Ce can promote the dispersion of MnOx on TiO2 support. Meanwhile, the doping of Ce in MnOx can also increase the content of Mn4+ species. The Mn4+ species plays a crucial role in NO oxidation reaction, which can trigger the “Fast SCR” reaction and promote the conversion of NOx. This work provides insight into the catalyst design for NH3-SCR process at low-temperature.


2021 ◽  
Author(s):  
Yingqi Hong ◽  
Jianyi Zhang ◽  
Yanxi Lv ◽  
Na Yao ◽  
Xiuming Liu

Abstract BackgroundSalicylic acid (SA) plays an important role in regulating leaf senescence. However, the molecular mechanism of leaf senescence of safflower (Carthamus tinctorius) is still elusive. In this study we found that the bHLH transcription factor (TF) CtbHLH41 in Carthamus tinctorius significantly delayed leaf senescence and inhibited the expression of senescence-related genes.ResultsIn order to explore how CtbHLH41 promotes leaf senescence, we carried out yeast two-hybrid screening. In this study, by exploring the mechanism of CtbHLH41 regulating CtCP1, it was found that CtCP1 promoted the hydrolysis of CtbHLH41 protein, accelerated the transcriptional activities of salicylic acid-mediated senescence-related genes CtSAG12 and CtSAG29, chlorophyll degradation genes CtNYC1 and CtNYE1, and accelerated leaf senescence. We found a negative SA regulator CtANS1, which interacts with CtbHLH41 and regulates its stability, thereby inhibiting CtCP1-mediated leaf senescence.ConclusionsIn short, our results provide a new insight into the mechanism of CtbHLH41 actively regulating the senescence of safflower leaves induced by SA.


2018 ◽  
Vol 19 (7) ◽  
pp. 2133 ◽  
Author(s):  
Yu Xun ◽  
Zhen Li ◽  
Yingxin Tang ◽  
Manjun Yang ◽  
Shengwen Long ◽  
...  

Neuroglobin is an endogenous neuroprotective protein, but the underlying neuroprotective mechanisms remain to be elucidated. Our previous yeast two-hybrid screening study identified that Dishevelled-1, a key hub protein of Wnt/β-Catenin signaling, is an interaction partner of Neuroglobin. In this study, we further examined the role of Neuroglobin in regulating Dishevelled-1 and the downstream Wnt/β-Catenin and NFκB signaling pathway. We found that Neuroglobin directly interacts with Dishevelled-1 by co-immunoprecipitation, and the two proteins are co-localized in both cytoplasma and nucleus of SK-N-SH cells. Moreover, the ectopic expression of Neuroglobin promotes the degradation of exogenous and endogenous Dishevelled-1 through the proteasomal degradation pathway. Furthermore, our results showed that Neuroglobin significantly inhibits the luciferase activity of Topflash reporter and the expression of β-Catenin mediated by Dishevelled-1 in SK-N-SH cells. In addition, we also documented that Neuroglobin enhances TNF-α-induced NFκB activation via down-regulating Dishevelled-1. Finally, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assays showed that Neuroglobin is an important neuroprotectant that protects SK-N-SH cells from TNF-α-induced decrease in cell viability. Taken together, these findings demonstrated that Neuroglobin functions as an important modulator of the Wnt/β-Catenin and NFκB signaling pathway through regulating Dishevelled-1.


2011 ◽  
Vol 58 (4) ◽  
Author(s):  
Eugenia Piccinni ◽  
Anna Chelstowska ◽  
Jakub Hanus ◽  
Piotr Widlak ◽  
Simona Loreti ◽  
...  

In order to understand better the role of the human Tip60 complex component Gas41, we analysed its expression levels in brain tumours and searched for possible interactors. Two-hybrid screening of a human foetal brain library allowed identification of some molecular interactors of Gas41. Among them we found n-Myc transcription factor. The interaction between Gas41 and n-Myc was validated by pull-down experiments. We showed that Gas41 is able to bind both n-Myc and c-Myc proteins, and that the levels of expression of Gas41 and Myc proteins were similar to each other in such brain tumors as neuroblastomas and glioblastomas. Finally, in order to identify which region of Gas41 is involved in the interaction with Myc proteins, we analysed the ability of Gas41 to substitute for its orthologue Yaf9 in yeast; we showed that the N-terminal portions of the two proteins, containing the YEATS domains, are interchangeable, while the C-terminal portions are species-specific. In fact we found that Gas41 C-terminal portion is required for Myc protein interaction in human.


2021 ◽  
Author(s):  
Komal Sharma ◽  
Irina Sizova ◽  
Girdhar Pandey ◽  
Peter Hegemann ◽  
Suneel Kateriya

Abstract Translocation of channelrhodopsins (ChRs) is mediated by intraflagellar transport (IFT) machinery. However, the functional role of the network containing photoreceptors, IFT and other proteins in controlling cilia motility of the alga is still not fully delineated. In the current study, we identified two important motifs at the C-terminus of ChR1. One of them is similar to a known ciliary targeting sequence that specifically interacts with a small GTPase, and the other is a SUMOylation site. For the first time, experimental data provide an insight into the role of SUMOylation in the modulation of IFT & ChR1. Blocking of SUMOylation affected the phototaxis of C. reinhardtii cells. This implies SUMOylation based regulation of protein network controlling photomotility. The conservation of SUMOylation site pattern as analyzed for the relevant photoreceptors, IFT and its associated signaling proteins in other ciliated green algae suggested SUMOylation based photobehavioural response across the microbes. This report establishes a link between evolutionary conserved SUMOylation and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and, photo-signaling, along with homologue(s) associated to human ciliopathies as SUMO targets.


2005 ◽  
Vol 16 (11) ◽  
pp. 5227-5235 ◽  
Author(s):  
Daisuke Nakada ◽  
Yukinori Hirano ◽  
Yuya Tanaka ◽  
Katsunori Sugimoto

The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), coordinate the cellular response to DNA damage. In budding yeast, ATR homologue Mec1 plays a central role in DNA damage signaling. Mec1 interacts physically with Ddc2 and functions in the form of the Mec1–Ddc2 complex. To identify proteins interacting with the Mec1–Ddc2 complex, we performed a modified two-hybrid screen and isolated RFA1 and RFA2, genes that encode subunits of replication protein A (RPA). Using the two-hybrid system, we found that the extreme C-terminal region of Mec1 is critical for RPA binding. The C-terminal substitution mutation does not affect the Mec1–Ddc2 complex formation, but it does impair the interaction of Mec1 and Ddc2 with RPA as well as their association with DNA lesions. The C-terminal mutation also decreases Mec1 kinase activity. However, the Mec1 kinase-defect by itself does not perturb Mec1 association with sites of DNA damage. We also found that Mec1 and Ddc2 associate with sites of DNA damage in an interdependent manner. Our findings support the model in which Mec1 and Ddc2 localize to sites of DNA damage by interacting with RPA in the form of the Mec1–Ddc2 complex.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3439-3439
Author(s):  
Sharon Hunter ◽  
Zhen-Yu Huang ◽  
Paul Chien ◽  
Moo-Kyung Kim ◽  
Randall G. Worth ◽  
...  

Abstract The high affinity Fcγreceptor FcγRI, consists of a ligand binding α chain and an associated γ chain subunit. Signaling by FcγRI is thought to be mediated through the cytoplasmic domain (CYT) of the γ chain which contains the ITAM sequence essential for many Ig receptor signaling events. For example, we have demonstrated that the γ chain is required for FcγRI mediated phagocytosis. The FcγRI α chain CYT lacks known signaling motifs and consists of 64 amino acids whose function has not yet been defined. Evidence is beginning to accumulate, however, for the participation of the FcγRIα CYT in FcγRI mediated signaling events. For example, we previously demonstrated that the FcγRIα CYT contributes to modulation of FcγRI mediated cytokine release (eg IL-6) and calcium flux. We have now observed that in the absence of γchain expression, FcγRIα efficiently induces the internalization of aggregated IgG complexes in transfected COS-1 cells. Taken together, the data suggest that the FcγRIα CYT contributes to signaling by FcγRI. We, therefore, utilized yeast two-hybrid screening to identify effector molecules that bind to the FcγRIα CYT. Of especial interest among the identified binding molecules is β arrestin-2, recently defined as an adaptor molecule linking receptors such as the LDL and type III TGF-β receptors to the endocytic pathway. Also of interest is Snapin, an adaptor molecule involved in membrane trafficking. These studies should help to define sequences in the cytoplasmic domain of FcγRIα that mediate and/or modulate important FcγR functions.


Sign in / Sign up

Export Citation Format

Share Document