scholarly journals Effects of 220 MHz Pulsed Modulated Radiofrequency Field on the Sperm Quality in Rats

Author(s):  
Ling Guo ◽  
Jia-Jin Lin ◽  
Yi-Zhe Xue ◽  
Guang-Zhou An ◽  
Jun-Ping Zhang ◽  
...  

Under some occupational conditions, workers are inevitably exposed to high-intensity radiofrequency (RF) fields. In this study, we investigated the effects of one-month exposure to a 220 MHz pulsed modulated RF field at the power density of 50 W/m2 on the sperm quality in male adult rats. The sperm quality was evaluated by measuring the number, abnormality and survival rate of sperm cells. The morphology of testis was examined by hematoxylin–eosin (HE) staining. The levels of secreting factors by Sertoli cells (SCs) and Leydig cells (LCs) were determined by enzyme linked immunosorbent assay (ELISA). The level of cleaved caspase 3 in the testis was detected by immunofluorescence staining. Finally, the expression levels of the apoptosis-related protein (caspase 3, BAX and BCL2) in the testis were assessed by Western blotting. Compared with the sham group, the sperm quality in the RF group decreased significantly. The levels of secreting factors of SCs and the morphology of the testis showed an obvious change after RF exposure. The level of the secreting factor of LCs decreased significantly after RF exposure. The levels of cleaved caspase 3, caspase 3, and the BAX/BCL2 ratio in the testis increased markedly after RF exposure. These data collectively suggested that under the present experimental conditions, 220 MHz pulsed modulated RF exposure could impair sperm quality in rats, and the disruption of the secreting function of LCs and increased apoptosis of testis cells induced by the RF field might be accounted for by this damaging effect.

1989 ◽  
Vol 67 (1) ◽  
pp. 210-220 ◽  
Author(s):  
P. S. Massarelli ◽  
H. J. Green ◽  
R. L. Hughson ◽  
M. T. Sharratt

To investigate the hypothesis that the rate of fatigue development is not influenced by the absolute duration of contraction (train duration) and relaxation (off-phase of duty cycle) at constant duty cycle, strips of the diaphragm from 36 male adult rats (mean +/- SD wt 152 +/- 21 g) were stimulated directly for periods of 180, 250, and 320 ms at a constant duty cycle of 50%. The frequency of stimulation was adjusted to produce 40% of maximal tetanic tension at supramaximal voltages. After 30 min of stimulation, analysis of twitch characteristics between control and experimental groups indicated a prolongation of contraction time of 9% (P less than 0.05), an increase in relaxation time of 75% (P less than 0.05), and a decrease in twitch tension by 78% (P less than 0.05). Similarly, reductions (P less than 0.05) in isometric force output at high stimulation frequency (100 Hz) of 58% and at low frequency (20 Hz) of 67% were also noted. These changes were accompanied by an approximately 60% reduction in the maximal velocity of shortening. No difference was observed for any of the mechanical measures between experimental conditions. After 30-min stimulation, decreases of between 43 and 46% were noted for ATP (P less than 0.05) and increases of between three- and fourfold noted for IMP (P less than 0.05). No changes were found for either ADP or AMP. Total adenine nucleotide concentrations declined (P less than 0.05) an average of 24%. As with the mechanical data, no differences were found between the different stimulation conditions. It is concluded that for the conditions studied, fatigue mechanisms become manifest early in the stimulation period and are only minimally altered by the duration of specific contractions provided the relaxation period is of equal duration.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jiang-Jing Li ◽  
Bin Deng ◽  
Xia-Jing Zhang ◽  
Miao-Miao Lv ◽  
Hui Zhao ◽  
...  

Electromagnetic pulse (EMP) is a unique type of electromagnetic radiation, and EMP exposure causes a series of biological effects. The nervous system is sensitive to EMP. We studied the neuroprotective effects of isoflurane preconditioning against EMP exposure and used hematoxylin-eosin staining (HE) to observe the effects of electromagnetic pulse and isoflurane preconditioning on neurons. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of caspase-3, CD11b, TLR4, and NFκBp65. We found that after EMP exposure, the number of abnormal neurons had increased, and the expression of caspase-3, CD11b, TLR4, and NFκBp65 had also increased. Isoflurane preconditioning can reverse the above phenomenon. Moreover, we found that isoflurane preconditioning can reduce neuronal apoptosis and improve cognitive impairment induced by EMP. These findings indicate that isoflurane preconditioning can protect neurons in the cerebral cortex from EMP exposure, alleviate the inflammatory reaction and cell apoptosis, and improve cognitive impairment induced by EMP. These effects may occur through the downregulation of the TLR4/NFκB signaling pathway and the inhibition of microglial activation.


2020 ◽  
Vol 21 (8) ◽  
pp. 734-740 ◽  
Author(s):  
Shou-di He ◽  
Ning Tan ◽  
Chen-xia Sun ◽  
Kang-han Liao ◽  
Hui-jun Zhu ◽  
...  

Background: Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory, analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss. Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the structure of the synovial intima, playing a crucial role in both the initiation and progression of RA. Objective: In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated from patients with RA. Methods: Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry, and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2) were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin 1) to assess autophagy in RA-FLS. Results: Our results show that melittin can significantly impair viability, promote apoptosis and autophagy, and inhibit IL-1β secretion in RA-FLS. Conclusion: Melittin may be useful in preventing damage to the joints during accidental local stimulation.


2021 ◽  
Vol 219 ◽  
pp. 112323
Author(s):  
Xiang Zhou ◽  
Tongtong Zhang ◽  
Lebin Song ◽  
Yichun Wang ◽  
Qijie Zhang ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3198
Author(s):  
Shiho Wasai ◽  
Eriko Toyoda ◽  
Takumi Takahashi ◽  
Miki Maehara ◽  
Eri Okada ◽  
...  

We are conducting a clinical study of the use of allogeneic polydactyly-derived chondrocyte sheets (PD sheets) for the repair of articular cartilage damage caused by osteoarthritis. However, the transplantation of PD sheets requires highly invasive surgery. To establish a less invasive treatment, we are currently developing injectable fragments of PD sheets (PD sheets-mini). Polydactyly-derived chondrocytes were seeded in RepCell™ or conventional temperature-responsive inserts and cultured. Cell counts and viability, histology, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), and flow cytometry were used to characterize PD sheets-mini and PD sheets collected from each culture. To examine the effects of injection on cell viability, PD sheets-mini were tested in four experimental conditions: non-injection control, 18 gauge (G) needle, 23G needle, and syringe only. PD sheets-mini produced similar amounts of humoral factors as PD sheets. No histological differences were observed between PD sheets and PD sheets-mini. Except for COL2A1, expression of cartilage-related genes did not differ between the two types of PD sheet. No significant differences were observed between injection conditions. PD sheets-mini have characteristics that resemble PD sheets. The cell viability of PD sheets-mini was not significantly affected by needle gauge size. Intra-articular injection may be a feasible, less invasive method to transplant PD sheets-mini.


2016 ◽  
Vol 106 ◽  
pp. 46-55 ◽  
Author(s):  
Bassem Sadek ◽  
Ali Saad ◽  
Dhanasekaran Subramanian ◽  
Mohamed Shafiullah ◽  
Dorota Łażewska ◽  
...  

1993 ◽  
Vol 128 (3) ◽  
pp. 268-273 ◽  
Author(s):  
René Habert

The acute in vivo testosterone response to LH stimulation and its change during late fetal life were determined in the rat. In 18.5-day-old fetuses, testicular testosterone content was increased in a dose-and time-dependent manner after fetal subcutaneous LH injection. The maximum response was small: the testicular content and plasma concentration were increased by 200% and 2 50% over basal values respectively, while they were increased 1100% and 1200% in adult rats. Similarly, comparable low responses were obtained after subcutaneously injecting the fetuses with human chorionic gonadotropin (hCG) and after injecting LH into the vitelline vein. Between days 18.5 and 21.5 of fetal life, the testosterone levels in the testis and plasma of uninjected or PBS-injected fetuses decreased and were comparable in both groups. In maximally LH-stimulated fetuses, the testicular content did not change with age, and plasma concentration was lower on day 21.5 than on day 18.5. Since the number of Leydig cells increases 1.5 to 2-fold between days 18.5 and 21.5, these results show an age-related decrease in basal and maximally LH-stimulated in vivo testosterone secretions per Leydig cell during late fetal life.


2018 ◽  
Vol 47 (1-3) ◽  
pp. 270-276
Author(s):  
Grazia Maria Virzì ◽  
Chiara Borga ◽  
Chiara Pasqualin ◽  
Silvia Pastori ◽  
Alessandra Brocca ◽  
...  

Background: Sepsis is a life-threatening condition often associated with a high incidence of multiple organs injury. Several papers suggested the immune response by itself, with the production of humoral inflammatory mediators, is crucial in determining organ injury. However, little is known of how sepsis directly induces organ injury at the cellular levels. To assess this point, we set up an in vitro study to investigate the response of renal tubular cells (RTCs), monocytes (U937) and hepatocytes (HepG2) after 24 h-incubation with septic patients’ plasma. Methods: We enrolled 26 septic patients (“test” group). We evaluated cell viability, apoptosis and necrosis by flow cytometer. Caspase-3,-8,-9 and cytochrome-c concentrations have been analyzed using the Human enzyme-linked immunosorbent assay kit. Results: We found that a decrease of cell viability in all cell lines tested was associated to the increase of apoptosis in RTCs and U937 (p < 0.0001) and increase of necrosis in HepG2 (p < 0.5). The increase of apoptosis in RTCs and U937 cells was confirmed by higher levels of caspase-3 (p < 0.0001). We showed that apoptosis in both RTCs and U937 was triggered by the activation of the intrinsic pathway, as caspase-9 and cytochrome-c levels significantly increased (p < 0.0001), while caspase-8 did not change. This assumption was strengthened by the significant correlation of caspase-9 with both cytochrome-c (r = 0.73 for RTCs and r = 0.69 for U937) and caspase-3 (r = 0.69 for RTCs and r = 0.63 for U937). Conclusion: Humoral mediators in septic patients’ plasma induce apoptosis. This fact suggests that apoptosis inhibitors should be investigated as future strategy to reduce sepsis-induced organ damages.


2016 ◽  
Vol 38 (4) ◽  
pp. 1365-1375 ◽  
Author(s):  
Jie Jian ◽  
Feifei Xuan ◽  
Feizhang Qin ◽  
Renbin Huang

Background/Aims: Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. Methods: The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-κBp65, Bcl-2 and Bax were detected by western blotting. Results: Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-κBp65 and Bax, but enhanced the expression of Bcl-2. Conclusion: These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document