scholarly journals Low-Intensity Exercise Training Additionally Increases Mitochondrial Dynamics Caused by High-Fat Diet (HFD) but Has No Additional Effect on Mitochondrial Biogenesis in Fast-Twitch Muscle by HFD

Author(s):  
Yun Seok Kang ◽  
Donghun Seong ◽  
Jae Cheol Kim ◽  
Sang Hyun Kim

This study examines how the high-fat diet (HFD) affects mitochondrial dynamics and biogenesis, and also whether combining it with low-intensity endurance exercise adds to these effects. Six 8-week-old male Sprague–Dawley (SD) rats were put on control (CON; standard chow diet), HF (HFD intake), and HFEx (HFD + low-intensity treadmill exercise) for 6 weeks. As a result, no change in body weight was observed among the groups. However, epididymal fat mass increased significantly in the two groups that had been given HFD. Blood free fatty acid (FFA) also increased significantly in the HF group. While HFD increased insulin resistance (IR), this was improved significantly in the HFEx group. HFD also significantly increased mitochondrial biogenesis-related factors (PPARδ, PGC-1α, and mtTFA) and mitochondrial electron transport chain proteins; however, no additional effect from exercise was observed. Mitochondrial dynamic-related factors were also affected: Mfn2 increased significantly in the HFEx group, while Drp1 and Fis-1 increased significantly in both the HF and HFEx groups. The number of mitochondria in the subsarcolemmal region, and their size in the subsarcolemmal and intermyofibrillar regions, also increased significantly in the HFEx group. Taken overall, these results show that HFD in combination with low-intensity endurance exercise has no additive effect on mitochondrial biogenesis, although it does have such an effect on mitochondrial dynamics by improving IR.

2019 ◽  
Vol 8 (3) ◽  
pp. 203-216 ◽  
Author(s):  
Anna C Simcocks ◽  
Kayte A Jenkin ◽  
Lannie O’Keefe ◽  
Chrishan S Samuel ◽  
Michael L Mathai ◽  
...  

Atypical cannabinoid compounds O-1602 and O-1918 are ligands for the putative cannabinoid receptors G protein-coupled receptor 55 and G protein-coupled receptor 18. The role of O-1602 and O-1918 in attenuating obesity and obesity-related pathologies is unknown. Therefore, we aimed to determine the role that either compound had on body weight and body composition, renal and hepatic function in diet-induced obesity. Male Sprague–Dawley rats were fed a high-fat diet (40% digestible energy from lipids) or a standard chow diet for 10 weeks. In a separate cohort, male Sprague–Dawley rats were fed a high-fat diet for 9 weeks and then injected daily with 5 mg/kg O-1602, 1 mg/kg O-1918 or vehicle (0.9% saline/0.75% Tween 80) for a further 6 weeks. Our data demonstrated that high-fat feeding upregulates whole kidney G protein receptor 55 expression. In diet-induced obesity, we also demonstrated O-1602 reduces body weight, body fat and improves albuminuria. Despite this, treatment with O-1602 resulted in gross morphological changes in the liver and kidney. Treatment with O-1918 improved albuminuria, but did not alter body weight or fat composition. In addition, treatment with O-1918 also upregulated circulation of pro-inflammatory cytokines including IL-1α, IL-2, IL-17α, IL-18 and RANTES as well as plasma AST. Thus O-1602 and O-1918 appear not to be suitable treatments for obesity and related comorbidities, due to their effects on organ morphology and pro-inflammatory signaling in obesity.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiying Wang ◽  
Qiang Wang ◽  
Cuimei Liang ◽  
Mingxing Su ◽  
Xin Wang ◽  
...  

Objective. To investigate the effects of acupuncture on metabolic health and gut microbiota dysbiosis in diet-induced abdominal obese model. Materials and Methods. Male Sprague-Dawley rats were randomly distributed into normal chow diet (NCD) group and high-fat diet (HFD) group. After 12 weeks of HFD feeding, an abdominal obese rat model was established. The abdominal obese rats were further assigned to acupuncture group (n=7) and nontreated HFD group (n=7). Acupuncture was applied to bilateral GB 26 of rats for 8 weeks. Subsequently, the body weight, waist circumference (WC), visceral fat mass, and liver weight were measured weekly in all rats. Metabolic parameters such as total cholesterol, triglyceride, alanine aminotransferase, aspartate transaminase, and blood glucose were measured by an automatic biochemical analyzer. The serum levels of insulin (INS) were determined using Rat INS ELISA Kit. Analysis of gut microbiota was carried out by 16S rRNA gene sequencing. Results. Acupuncture decreased the body weight, WC, and visceral adipose tissues of HFD-induced abdominal obese rats. In addition, insulin sensitivity, glucose homeostasis, and lipid metabolism were improved by this treatment. Furthermore, electroacupuncture effectively modified the composition of gut microbiota, mainly via decreasing Firmicutes/Bacteroidetes ratio and increasing Prevotella_9 abundance. Conclusions. Electroacupuncture can ameliorate abdominal obesity and prevent metabolic disorders in HFD-induced abdominal obese rats, via the modulation of gut microbiota.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Szu-Wei Huang ◽  
Yu-Che Ou ◽  
Kuo-Shu Tang ◽  
Hong-Ren Yu ◽  
Li-Tung Huang ◽  
...  

Abstract Background The deleterious effect of maternal high-fat diet (HFD) on the fetal rat liver may cause later development of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effect of maternal HFD-induced maternal hepatic steatosis and dysbiosis on the fetal liver and intestines, and the effect of prenatal metformin in a rat model. Methods Sprague–Dawley rats were assigned to three groups (N = 6 in each group). Before mating, the rats were randomly assigned to HFD or normal-chow diet (NCD) group for 7 weeks. After mating, the HFD group rats were continued with high-fat diet during pregnancy and some of the HFD group rats were co-treated with metformin (HFMf) via drinking water during pregnancy. All maternal rats and their fetuses were sacrificed on gestational day 21. The liver and intestinal tissues of both maternal and fetal rats were analyzed. In addition, microbial deoxyribonucleic acid extracted from the maternal fecal samples was analyzed. Results HFD resulted in maternal weight gain during pregnancy, intrahepatic lipid accumulation, and change in the serum short-chain fatty acid profile, intestinal tight junctions, and dysbiosis in maternal rats. The effect of HFD on maternal rats was alleviated by prenatal metformin, which also ameliorated inflammation and apoptosis in the fetal liver and intestines. Conclusions This study demonstrated the beneficial effects of prenatal metformin on maternal liver steatosis, focusing on the gut-liver axis. In addition, the present study indicates that prenatal metformin could ameliorate maternal HFD-induced inflammation and apoptosis in the fetal liver and intestines. This beneficial effect of in-utero exposure of metformin on fetal liver and intestines has not been reported. This study supports the use of prenatal metformin for pregnant obese women.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ali Amirinejad ◽  
Ali Saneei Totmaj ◽  
Farzaneh Mardali ◽  
Azita Hekmatdoost ◽  
Hadi Emamat ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The aim of this study was to evaluate the effects of hydro-alcoholic extract of spinach (HES) on hepatic and serum measurements of NAFLD in a rat model. Methods In the prevention phase, 18 Sprague–Dawley rats were fed a high-fat diet, a high-fat diet plus 400 mg/kg HES, or a chow diet for seven weeks. For the treatment phase, after the induction of NAFLD, they were fed a high-fat diet, a high-fat diet plus 400 mg/kg HES, a chow diet, or a chow diet plus 400 mg/kg HES for four weeks (n = 6). Results Administration of HES combined with high-fat diet in rats was associated with decreased food intake (P < 0.01), weight loss (P = 0.01), and increased superoxide dismutase (SOD) (P = 0.02) enzyme activity in the liver, at the end of the prevention phase. hs-CRP (P < 0.05), PTX-3 (P < 0.05), and TNF-α (P < 0.05) gene expression in the liver were decreased and PPAR-γ (P < 0.05) gene expression in the liver was increased by spinach intake, both in the prevention and treatment phases. Furthermore, administration of spinach in the treatment phase increased serum TAC (P = 0.03) and hepatic GPX (P = 0.01) enzyme activity. Conclusion Taking into account the potential beneficial effects of HES on prevention and treatment of NAFLD in the present study, to confirm these findings, we propose that further clinical trials be conducted on human subjects with NAFLD.


2021 ◽  
Author(s):  
Ali Amirinejad ◽  
Ali Saneei Totmaj ◽  
Farzaneh Mardali ◽  
Azita Hekmatdoost ◽  
Hadi Emamat ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The aim of this study was to evaluate the effects of hydro-alcoholic extract of spinach (HES) on hepatic and serum measurements of NAFLD in a rat model. Methods During the prevention phase, 18 Sprague–Dawley rats were fed one of the following regimens: a high-fat diet, a high-fat diet plus 400mg/kg HES, or a chow diet ad libitum for seven weeks. Before the treatment phase, NAFLD was induced in 24 rats. Afterwards, they were fed one of the following regimens: the same NAFLD-inducing diet, high-fat diet plus 400mg/kg HES, the chow diet, or chow diet plus 400mg/kg HES ad libitum for four weeks (n=6 in each group). Results Administration of HES combined with HF diet in rats was associated with decreased food intake (P< 0.01), weight loss (P=0.01), and increased SOD (P= 0.02) enzyme activity in the liver at the end of the prevention phase. hs-CRP (P< 0.05), PTX-3 (P< 0.05), PPAR-γ, and TNF-α gene expression in the liver were improved by spinach intake (P< 0.05), both in the prevention and treatment phases. Furthermore, administration of spinach in the treatment phase increased serum TAC (P=0.03) and hepatic GPX (P=0.01) enzyme activity. Conclusion Taking into account beneficial effects of HES on prevention and treatment of NAFLD observed in the present study, we propose that further human-based clinical investigations be conducted on subjects with NAFLD.


2017 ◽  
Vol 24 (02) ◽  
pp. 216-220
Author(s):  
Faizania Shabbir ◽  
M. Mazhar Hussain ◽  
Tausif Ahmed Rajput ◽  
Alamgir Khan

Objectives: To observe the effect of obesity and subsequent atorvastatinadministration on MPV in high fat diet induced obese male and female Sprague Dawley rats.Study Design: Randomized control trial (RCT). Setting: Department of Physiology, Army MedicalCollege, Rawalpindi. Animal procurement and blood sampling was done at National Instituteof Health (NIH), Islamabad and biochemical assays were performed at Centre for Research inExperimental and Applied Medicine (CREAM), Army Medical College, Rawalpindi. Period: Thestudy was completed in 12 months. Material and Methods: Ninety healthy Sprague Dawley(male and female) rats were purchased and divided randomly into three equal groups. Ratsin normal control group (Group I) were given normal chow diet for three weeks. Rats in obesecontrol group (Group II) were given high fat diet for three weeks. Rats in obese treated group(Group III) were administered atorvastatin for three weeks in a dose of 10 mg/kg/day orally bygavage method after obesity induction. Terminal sampling was done at the end of the studyby intra-cardiac puncture. MPV is a part of blood complete picture that was analysed by KX 21Sysmex Hematology Analyzer. Results: High fat diet induced obesity resulted in a significant(p < 0.05) increase in MPV. The MPV was significantly (p < 0.05) decreased after atorvastatinadministration. The result was comparable for both genders. Conclusions: Obesity increasesMPV and hence the risk of adverse cardiovascular outcome. Atorvastatin apart from its knownlipid lowering effect, decreases MPV and can play a beneficial role in decreasing cardiovascularmorbidity and mortality. 


2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document