scholarly journals The Impact of the Deepwater Horizon Oil Spill upon Lung Health—Mouse Model-Based RNA-Seq Analyses

Author(s):  
Yao-Zhong Liu ◽  
Charles A Miller ◽  
Yan Zhuang ◽  
Sudurika S Mukhopadhyay ◽  
Shigeki Saito ◽  
...  

We used a transcriptomic approach to interrogate the effects of a saline-accommodated fraction from the Macondo 252 well (MC252) oil and Corexit dispersants on lung tissue. Wild-type C57BL/6 male and female mice were exposed on days 0, 7 and 13 by oropharyngeal aspiration to saline accommodated fractions (SAF) of crude oil from the Macondo (MC252) well, Corexit 9500, Corexit 9527, 9500+oil and 9527+oil or a saline solution as the vehicle control. These treatments did not cause overt toxicity, with the exception of the Corexit exposures which caused brief weight loss after the first exposure. On day 14, total RNA was isolated from the left lung for RNA-seq analyses. KEGG-pathway-based differential expression revealed that Corexit 9527 elicited the strongest changes involving the upregulation of 19 KEGG pathways (FDR < 0.10), followed by Corexit 9500 with the upregulation of seven pathways (FDR < 0.10). As an important signature, pathways related to a response to DNA damage (e.g., p53 signaling and mismatch repair) dominate those upregulated by Corexit 9527 and Corexit 9500. In addition, pro-inflammatory pathways (e.g., cytokine-cytokine receptor interaction, IL-17 signaling pathway and TNF signaling pathways) were upregulated selectively in oil-treated male mice. Surprisingly, oil + dispersant combinations caused lesser effects than the individual treatments at the transcriptomic level. Overall, these findings support potential genotoxicity, inflammation and cell death due to dispersant or oil exposures. Similar exposures to lung tumor bearing K-RasLA1 mice provided evidence for tumor promotion by oil and Corexit dispersant treatments. Our mouse RNA-seq analyses may be relevant to the pulmonary health hazards of MC252 oil and dispersants experienced in exposed populations.

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 344 ◽  
Author(s):  
Bryan Irvine Lopez ◽  
Kier Gumangan Santiago ◽  
Donghui Lee ◽  
Seungmin Ha ◽  
Kangseok Seo

Immune response of 107 vaccinated Holstein cattle was initially obtained prior to the ELISA test. Five cattle with high and low bovine viral diarrhea virus (BVDV) type I antibody were identified as the final experimental animals. Blood samples from these animals were then utilized to determine significant differentially expressed genes (DEGs) using the RNA-seq transcriptome analysis and enrichment analysis. Our analysis identified 261 DEGs in cattle identified as experimental animals. Functional enrichment analysis in gene ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed the DEGs potentially induced by the inactivated BVDV type I vaccine, and might be responsible for the host immune responses. Our findings suggested that inactivated vaccine induced upregulation of genes involved in different GO annotations, including antigen processing and presentation of peptide antigen (via MHC class I), immune response, and positive regulation of interferon-gamma production. The observed downregulation of other genes involved in immune response might be due to inhibition of toll-like receptors (TLRs) by the upregulation of the Bcl-3 gene. Meanwhile, the result of KEGG pathways revealed that the majority of DEGs were upregulated and enriched to different pathways, including cytokine-cytokine receptor interaction, platelet activation, extracellular matrix (ECM) receptor interaction, hematopoietic cell lineage, and ATP-binding cassette (ABC) transporters. These significant pathways supported our initial findings and are known to play a vital role in shaping adaptive immunity against BVDV type 1. In addition, type 1 diabetes mellitus pathways tended to be significantly enriched. Thus, further studies are needed to investigate the prevalence of type 1 diabetes mellitus in cattle vaccinated with inactivated and live BVDV vaccine.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yunlu Gao ◽  
Xuemei Yi ◽  
Yangfeng Ding

RNA-seq has enabled in-depth analysis of the pathogenesis of psoriasis on the transcriptomic level, and many biomarkers have been discovered to be related to the immune response, lipid metabolism, and keratinocyte proliferation. However, few studies have combined analysis from various datasets. In this study, we integrated different psoriasis RNA-seq datasets to reveal the pathogenesis of psoriasis through the analysis of differentially expressed genes (DEGs), pathway analysis, and functional annotation. The revealed biomarkers were further validated through proliferation phenotypes. The results showed that DEGs were functionally related to lipid metabolism and keratinocyte differentiation dysregulation. The results also showed new biomarkers, such as AKR1B10 and PLA2G gene families, as well as pathways that include the PPAR signaling pathway, cytokine-cytokine receptor interaction, alpha-linoleic acid metabolism, and glycosphingolipid biosynthesis. Using siRNA knockdown assays, we further validated the role that the AKR1B10 gene plays in proliferation. Our study demonstrated not only the dysfunction of the AKR1B10 gene in lipid metabolizing but also its important role in the overproliferation and migration of keratinocyte, which provided evidence for further therapeutic uses for psoriasis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guo-quan Li ◽  
Ye Wang ◽  
Meng-jun Qiu ◽  
Jing Yang ◽  
Zhen-jun Peng ◽  
...  

Objectives. To explore the impact of volume change in the fractionated tracking of stereotactic radiotherapy on the results of synchronous, respiratory tracking algorithm using CyberKnife. Methods. A total of 38 lung tumor patients receiving stereotactic radiotherapy at our center from March 2018 to October 2019 were counted. Photoshop CS4 image processing software was used to obtain the pixels and the average value of brightness of the tracking volume in the image and calculate the grayscale within the contour of the tracking volume on the real-time X-ray image. At the same time, parameters of the synchronous respiratory tracking algorithm of the fractional CyberKnife were extracted for comparison between the volume of image-guided image tracking and the number of fractions during stereotactic radiotherapy. We also analyzed the relationship between fraction tumor location and characteristics and the calculated results of synchronous respiratory tracking by CyberKnife. Results. There were no significant differences between the first four fractions (p>0.05) for left lung lesions and no significant differences between the first five fractions for right lung lesions (p≥0.05). For peripheral lung cancer, longer fractional treatment led to greater variation in grayscale (G-A: >4 fractions p<0.05), while for central lung cancer, longer fractional treatment led to greater variation in parameters of the synchronous respiratory tracking algorithm (Uncertainty A and Uncertainty B: >4 fractions p<0.05). There was a significant correlation between radiotherapy-graded tumor density and relevant parameters, and the correlation was strong (>0.7, p<0.05). Conclusion. With the increase of treatment fractions, the gray value in the patient tracking volume decreased. Patients of >4 fractions were advised to reevaluate with simulated CT and replan. For tumors with small diameter and low density, the imaging changes of volume should be closely followed during treatment. For left lung and central lung cancer, carefully select the synchronous tracking treatment with 2-view.


Author(s):  
Jie Yang ◽  
Chi Zhang ◽  
Wei-Hong Li ◽  
Tian-Er Zhang ◽  
Guang-Zhong Fan ◽  
...  

Background:: In Traditional Chinese Medicine (TCM), the heads and tails of Angelica sinensis (Oliv.) Diels (AS) is used in treating different diseases due to their different pharmaceutical efficacies. The underline mechanisms, however, have not been fully explored. Objective:: Novel mechanisms responsible for the discrepant activities between AS heads and tails were explored by a combined strategy of transcriptomes and metabolomics. Method:: Six pairs of the heads and tails of AS roots were collected in Min County, China. Total RNA and metabolites, which were used for RNA-seq and untargeted metabolomics analysis, were respectively isolated from each AS sample (0.1 g) by Trizol and methanol reagent. Subsequently, differentially expressed genes (DEGs) and discrepant pharmaceutical metabolites were identified for comparing AS heads and tails. Key DEGs and metabolites were quantified by qRT-PCR and targeted metabolomics experiment. Results:: Comprehensive analysis of transcriptomes and metabolomics results suggested that five KEGG pathways with significant differences included 57 DEGs. Especially, fourteen DEGs and six key metabolites were relation to the metabolic regulation of Phenylpropanoid biosynthesis (PB) pathway. Results of qRT-PCR and targeted metabolomics indicated that higher levels of expression of crucial genes in PB pathway, such as PAL, CAD, COMT and peroxidase in the tail of AS were positively correlated with levels of ferulic acid-related metabolites. The average content of ferulic acid in tails (569.58162.39 nmol/g) was higher than those in the heads (168.73  67.30 nmol/g) (P˂0.01); Caffeic acid in tails (3.82  0.88 nmol/g) vs heads (1.37  0.41 nmol/g) (P˂0.01), and Cinnamic acid in tails (0.24  0.09 nmol/g) vs heads (0.14  0.02 nmol/g) (P˂0.05). Conclusion:: Our work demonstrated that overexpressed genes and accumulated metabolites derived from PB pathway might be responsible for the discrepant pharmaceutical efficacies between AS heads and tails.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruining Liu ◽  
Gang Li ◽  
Haoli Ma ◽  
Xianlong Zhou ◽  
Pengcheng Wang ◽  
...  

Abstract Background Ventilator-induced diaphragmatic dysfunction (VIDD) is associated with weaning difficulties, intensive care unit hospitalization (ICU), infant mortality, and poor long-term clinical outcomes. The expression patterns of long noncoding RNAs (lncRNAs) and mRNAs in the diaphragm in a rat controlled mechanical ventilation (CMV) model, however, remain to be investigated. Results The diaphragms of five male Wistar rats in a CMV group and five control Wistar rats were used to explore lncRNA and mRNA expression profiles by RNA-sequencing (RNA-seq). Muscle force measurements and immunofluorescence (IF) staining were used to verify the successful establishment of the CMV model. A total of 906 differentially expressed (DE) lncRNAs and 2,139 DE mRNAs were found in the CMV group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the biological functions or pathways of these DE mRNAs. Our results revealed that these DE mRNAs were related mainly related to complement and coagulation cascades, the PPAR signaling pathway, cholesterol metabolism, cytokine-cytokine receptor interaction, and the AMPK signaling pathway. Some DE lncRNAs and DE mRNAs determined by RNA-seq were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-sEq. Co-expression network analysis indicated that three selected muscle atrophy-related mRNAs (Myog, Trim63, and Fbxo32) were coexpressed with relatively newly discovered DE lncRNAs. Conclusions This study provides a novel perspective on the molecular mechanism of DE lncRNAs and mRNAs in a CMV model, and indicates that the inflammatory signaling pathway and lipid metabolism may play important roles in the pathophysiological mechanism and progression of VIDD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiankun Hui ◽  
Hongyang Jing ◽  
Xinsheng Lai

Abstract Background Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases. Results In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein–protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes. Conclusion Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Li Tong ◽  
◽  
Po-Yen Wu ◽  
John H. Phan ◽  
Hamid R. Hassazadeh ◽  
...  

Abstract To use next-generation sequencing technology such as RNA-seq for medical and health applications, choosing proper analysis methods for biomarker identification remains a critical challenge for most users. The US Food and Drug Administration (FDA) has led the Sequencing Quality Control (SEQC) project to conduct a comprehensive investigation of 278 representative RNA-seq data analysis pipelines consisting of 13 sequence mapping, three quantification, and seven normalization methods. In this article, we focused on the impact of the joint effects of RNA-seq pipelines on gene expression estimation as well as the downstream prediction of disease outcomes. First, we developed and applied three metrics (i.e., accuracy, precision, and reliability) to quantitatively evaluate each pipeline’s performance on gene expression estimation. We then investigated the correlation between the proposed metrics and the downstream prediction performance using two real-world cancer datasets (i.e., SEQC neuroblastoma dataset and the NIH/NCI TCGA lung adenocarcinoma dataset). We found that RNA-seq pipeline components jointly and significantly impacted the accuracy of gene expression estimation, and its impact was extended to the downstream prediction of these cancer outcomes. Specifically, RNA-seq pipelines that produced more accurate, precise, and reliable gene expression estimation tended to perform better in the prediction of disease outcome. In the end, we provided scenarios as guidelines for users to use these three metrics to select sensible RNA-seq pipelines for the improved accuracy, precision, and reliability of gene expression estimation, which lead to the improved downstream gene expression-based prediction of disease outcome.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2164-2173 ◽  
Author(s):  
Woo-Young Kim ◽  
Mi-Jung Kim ◽  
Hojin Moon ◽  
Ping Yuan ◽  
Jin-Soo Kim ◽  
...  

The IGF axis has been implicated in the risk of various cancers. We previously reported a potential role of tissue-derived IGF in lung tumor formation and progression. However, the role of IGF-binding protein (IGFBP)-3, a major IGFBP, on the activity of tissue-driven IGF in lung cancer development is largely unknown. Here, we show that IGF-I, but not IGF-II, protein levels in non-small-cell lung cancer (NSCLC) were significantly higher than those in normal and hyperplastic bronchial epithelium. We found that IGF-I and IGFBP-3 levels in NSCLC tissue specimens were significantly correlated with phosphorylated IGF-IR (pIGF-IR) expression. We investigated the impact of IGFBP-3 expression on the activity of tissue-driven IGF-I in lung cancer development using mice carrying lung-specific human IGF-I transgene (Tg), a germline-null mutation of IGFBP-3, or both. Compared with wild-type (BP3+/+) mice, mice carrying heterozygous (BP3+/−) or homozygous (BP3−/−) deletion of IGFBP-3 alleles exhibited decreases in circulating IGFBP-3 and IGF-I. Unexpectedly, IGFTg mice with 50% of physiological IGFBP-3 (BP3+/−; IGFTg) showed higher levels of pIGF-IR/IR and a greater degree of spontaneous or tobacco carcinogen [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]-induced lung tumor development and progression than did the IGFTg mice with normal (BP3+/+;IGFTg) or homozygous deletion of IGFBP-3 (BP3−/−; IGFTg). These data show that IGF-I is overexpressed in NSCLC, leading to activation of IGF-IR, and that IGFBP-3, depending on its expression level, either inhibits or potentiates IGF-I actions in lung carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document