scholarly journals Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis

Author(s):  
Giancarla Alberti ◽  
Camilla Zanoni ◽  
Lisa Rita Magnaghi ◽  
Raffaela Biesuz

Environmental contamination affects human health and reduces the quality of life. Therefore, the monitoring of water and air quality is important, ensuring that all areas are acquiescent with the current legislation. Colorimetric sensors deliver quick, naked-eye detection, low-cost, and adequate determination of environmental analytes. In particular, disposable sensors are cheap and easy-to-use devices for single-shot measurements. Due to increasing requests for in situ analysis or resource-limited zones, disposable sensors’ development has increased. This review provides a brief insight into low-cost and disposable colorimetric sensors currently used for environmental analysis. The advantages and disadvantages of different colorimetric devices for environmental analysis are discussed.

2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


2011 ◽  
Vol 17 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Nada Babovic ◽  
Dejan Markovic ◽  
Vojkan Dimitrijevic ◽  
Dragan Markovic

This paper shows the results obtained in field analysis performed at the Tamis River, starting from the settlement Jasa Tomic - border between Serbia and Romania to Pancevo - confluence of Tamis into the Danube. The Tamis is a 359 km long river rising in the southern Carpathian Mountains. It flows through the Banat region and flows into the Danube near Pancevo. During the years the water quality of the river has severely deteriorated and badly affected the environment and the river ecosystem. In situ measurements enabled determination of physico-chemical parameters of water quality of the Tamis River on every 400 m of the watercourse, such as: water temperature, pH value, electrical conductivity, contents of dissolved oxygen and oxygen saturation. The main reason of higher pollution of Tamis is seen in connection to DTD hydro system. Sampling was performed at 7 points with regard to color, turbidity, total hardness, alkalinity, concentration of ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, iron, chlorides and sulphates in samples. The aim of the present work was to evaluate water quality in the Tamis River taking into account significant pollution, which originates from settlements, industry and agriculture, and to suggest appropriate preventive measures to further pollution decreasing of the river's water.


2020 ◽  
Vol 13 ◽  
pp. 247
Author(s):  
N. Evaggeliou ◽  
Ch. Lykomitrou ◽  
A. Zafiropoulou

In the present study a comparative evaluation of two methods for 137Cs determination (pretreatment for gamma spectrometry) is attempted. One of them is the conventional AMP (ammonium molybdophosphate, (ΝΗ4)3Ρ(Μo3O10)4) method (radiochemical treatment based on coprecipitation) and the other one is a method based on pre-concentration of cesium in situ by using the Mark III Centrifugal Pump. The pump, which is described analytically in the study, is composed of a mo­tor (pump), four cartridge housings (containing the scavengers), a flow meter and a pressure tube (containing the battery pack and the timer board). For justification, this method is compared with the AMP co-precipitation one. Following up the radioanalytical procedures, the gamma spectrometry system (relative efficiency of high purity germanium detector 90%) is also demonstrated, as conformed to mea­ suring obtained parameters. Finally, the advantages and disadvantages of these two methods are recorded and the application of each one is suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoxia Liu ◽  
Miaomiao Tian ◽  
Wenmei Gao ◽  
Jinzhong Zhao

An efficient, sensitive, and low-cost method has been developed for turn-on fluorescence sensing of dopamine (DA). The method relies on the rapid reaction of DA and 3-Hydroxyphenylboronic acid (3-HPBA) via specific recognition between boronic acids and cis-diol of DA in alkaline solution. The reaction product shows an excitation wavelength of 417 nm and the maximum emission peak at 470 nm. The proposed method allows the determination of DA in the range of 50 nM–25 μM, and the whole detection can be completed within 5 minutes. Furthermore, the presented approach has good selectivity and has been successfully applied to DA sensing in human serum samples, showing great potential in clinical diagnosis.


2005 ◽  
Vol 38 (2) ◽  
pp. 396-397 ◽  
Author(s):  
Nobuhisa Watanabe

The modification and use of the Nextal crystallization device for checking the diffraction quality of protein crystalsin situis described. Using the modified device, crystals in the crystallization drop can be exposed to X-rays directly to observe the diffraction quality without physical damage to the crystal. If the crystals in the drop are well separated, not only the resolution limit of the crystal is estimated, but also determination of the space group and the cell parameters is possible.


1997 ◽  
Vol 482 ◽  
Author(s):  
W. A. Doolittle ◽  
T. Kropewnicki ◽  
C. Carter-Coman ◽  
S. Stock ◽  
P. Kohl ◽  
...  

AbstractThe GaN on LGO system is the near perfect template (due to extremely high etch selectivity) for developing a viable thin film/compliant GaN substrate. Herein, we report on our efforts to grow GaN on LGO, including improvement of the microscopic surface morphology using pre-growthpretreatments. We also report on the first transferred thin film GaN substrate grown on LGO, transferred off of LGO, and mounted on GaAs. With this approach, (InAl)GaN alloys can be grown on thin GaN films, implementing a truly “compliant” substrate for the nitride alloy system. In addition, the flexibility of bonding to low cost Si, metal or standard ceramic IC packages is an attractive alternative to SiC and HVPE GaN substrates for optimizing cost verses thermal conductivity concerns. We have demonstratedhigh quality growth of GaN on LGO. X-Ray rocking curves of 145 arc-seconds are obtained with only a 0.28 μm thick film. We present data on the out of plane crystalline quality of GaN/LGO material. Likewise, we show 2 orders of magnitude improvement in residual doping concentration and factors of 4 improvement in electron mobility as compared to the only previously reported electrical data. We show substantial vendor to vendor and intra-vendor LGO material quality variations. We have also quantified the desorption of Ga and Li from the surface of LGO at typical growth temperatures using in situ desorption mass spectroscopy and XPS.


1999 ◽  
Vol 2 (02) ◽  
pp. 125-133 ◽  
Author(s):  
M.N. Hashem ◽  
E.C. Thomas ◽  
R.I. McNeil ◽  
Oliver Mullins

Summary Determination of the type and quality of hydrocarbon fluid that can be produced from a formation prior to construction of production facilities is of equal economic importance to predicting the fluid rate and flowing pressure. We have become adept at making such estimates for formations drilled with water-based muds, using open-hole formation evaluation procedures. However, these standard open-hole methods are somewhat handicapped in wells drilled with synthetic oil-based mud because of the chemical and physical similarity between the synthetic oil-based filtrate and any producible oil that may be present. Also complicating the prediction is that in situ hydrocarbons will be miscibly displaced away from the wellbore by the invading oil-based mud filtrate, leaving little or no trace of the original hydrocarbon in the invaded zone. Thus, normal methods that sample fluids in the invaded zone will be of little use in predicting the in situ type and quality of hydrocarbons deeper in the formation. Only when we can pump significant volume of filtrate from the invaded zone to reconnect and sample the virgin fluids are we successful. However, since the in situ oil and filtrate are miscible, diffusion mixes the materials and blurs the interface; as mud filtrate is pumped from the formation into the borehole, the degree of contamination is greater than one might expect, and it is difficult to know when to stop pumping and start sampling. What level of filtrate contamination in the in situ fluid is tolerable? We propose a procedure for enhancing the value of the data derived from a particular open-hole wireline formation tester by quantitatively evaluating in real time the quality of the fluid being collected. The approach focuses on expanding the display of the spectroscopic data as a function of time on a more sensitive scale than has been used previously. This enhanced sensitivity allows one to confidently decide when in the pumping cycle to begin the sampling procedure. The study also utilizes laboratory determined PVT information on collected samples to form a data set that we use to correlate to the wireline derived spectroscopic data. The accuracy of these correlations has been verified with subsequent predictions and corroborated with laboratory measurements. Lastly, we provide a guideline for predicting the pump-out time needed to obtain a fluid sample of a pre-determined level of contamination when sampling conditions fall within our range of empirical data. Conclusions This empirical study validates that PVT quality hydrocarbon samples can be obtained from boreholes drilled with synthetic oil-based mud utilizing wireline formation testers deployed with downhole pump-out and optical analyzer modules. The data set for this study has the following boundary conditions: samples were obtained in the Gulf of Mexico area; the rock formations are unconsolidated to slightly consolidated, clean to slightly shaly sandstones; the in situ hydrocarbons and the synthetic oil-based mud filtrate have measurable differences in their visible and/or near infrared spectra. Specifically, this study demonstrates that during the pump-out phase of operations we can use the optical analyzer response to predict the API gravity and gas/oil ratio of the reservoir hydrocarbons prior to securing a downhole sample. Additionally, we can predict the pump out time required to obtain a reservoir sample with less than 10% mud filtrate contamination if we know or can estimate reservoir fluid viscosity and formation permeability. Extension of this method to other formations and locales should be possible using similar empirical correlation methodology. Introduction The high cost of offshore production facilities construction and deployment require accurate prediction of hydrocarbon PVT properties prior to fabrication. In the offshore Gulf of Mexico, one method to obtain a PVT quality hydrocarbon sample is to use a cased hole drill stem test. However, this procedure is usually quite costly due to the need for sand control. Shell has been an advocate of eliminating this costly step by utilizing openhole wireline test tools to obtain the PVT quality sample of the reservoir hydrocarbon. The success of this approach depends upon the availability of a wireline tool with a downhole pump that permits removal of the mud filtrate contamination prior to sampling the reservoir fluids, and a downhole fluid analyzer that can distinguish reservoir fluid from filtrate. One such tool is the Modular Formation Dynamics Tester (MDT).1 The optical fluid analyzer module of the MDT functions by subjecting the fluids being pumped to absorption spectroscopy in the visible and near-infrared (NIR) ranges. Interpretation of these spectra is the subject of this paper. Tool descriptions and basic theory of operations were presented in an earlier text.2 The concept of using visible and/or NIR spectroscopy to characterize the fluids being sampled while pumping is straightforward when there are measurable differences in the spectra of the mud filtrate and the reservoir hydrocarbons. As shown in Fig. 1, there are well known areas3,4 of the NIR spectrum (800-2000 nm) that are diagnostic of water and oil. The optical fluid analyzer module (OFA) of the MDT has channels tuned at 10 locations as indicated in Fig. 1, and thus the response in channels 6, 8, and 9 can be used to discern water from hydrocarbon. Another section of the OFA is designed to detect gas by measuring reflected polarized light from the pumped fluids, but we do not discuss its operation further except to say that it is a reliable gas indicator.


2012 ◽  
Vol 2 (3) ◽  
pp. 172-187 ◽  
Author(s):  
J. Reinking ◽  
A. Härting ◽  
L. Bastos

AbstractWith the growing global efforts to estimate the influence of civilization on the climate change it would be desirable to survey sea surface heights (SSH) not only by remote sensing techniques like satellite altimetry or (GNSS) Global Navigation Satellite System reflectometry but also by direct and in-situ measurements in the open ocean. In recent years different groups attempted to determine SSH by ship-based GNSS observations. Due to recent advances in kinematic GNSS (PPP) Precise Point Positioning analysis it is already possible to derive GNSS antenna heights with a quality of a few centimeters. Therefore it is foreseeable that this technique will be used more intensively in the future, with obvious advantages in sea positioning. For the determination of actual SSH from GNSS-derived antenna heights aboard seagoing vessels some essential hydrostatic and hydrodynamic corrections must be considered in addition to ocean dynamics and related corrections. Systematic influences of ship dynamics were intensively analyzed and sophisticated techniques were developed at the Jade University during the last decades to precisely estimate mandatory corrections. In this paper we will describe the required analyses and demonstrate their application by presenting a case study from an experiment on a cruise vessel carried out in March 2011 in the Atlantic Ocean.


2021 ◽  
Vol 16 (1) ◽  
pp. 32-40
Author(s):  
O.V. Bayer ◽  
O.V. Bondarets ◽  
V.М. Mykhalska ◽  
L.V. Shevchenko ◽  
О.М. Stupak ◽  
...  

A liquid chromatographic-tandem mass spectrometric (LC–MS/MS) multi-residue method has been used for the simultaneous quantification and identification of 9 residues and metabolites of benzimidazole derivatives that the most widely used as anthelmintic veterinary drugs of animals. The modified QuEChERS method was used for sample preparation, which was initially developed for pesticide residue analysis. This paper highlights how quick, easy, cheap, effective and rugged the QuEChERS extraction method is. The method was successfully validated according to the 2002/657/EC guidelines. Recovery of analytes was in the range 99 – 110 %. The decission limits (ССα ) were calculated at MRL level for analytes with an established permitted limit as next: 104.5 μg kg-1 (albendazole), 53.2 μg kg-1 (fenbendazole), 54.2 μg kg-1 (flubendazole), 12.1 μg kg-1 (levamisole), 53.9 μg kg-1 (cambendazole), 64.2 μg kg-1 (mebendazole), 52.5 μg kg-1 (parabendazole), 105.8 μg kg-1 (thiabendazole), 234.2 μg kg-1 (triclobendazole). The suitability of the assay has been assessed through InterVal Software by quo data GmbH (Germany). The method achieves high quality of the results, good recovery, repeatabilities, within-lab reproducibilities, and wide analytical scope and has practical benefits, low cost, high sample throughput, little labor used and few lab ware.


Author(s):  
Aron Hakonen ◽  
Niklas Strömberg

Drinking water contamination of lead from various environmental sources, leaching consumer products and intrinsic water-pipe infrastructure is still today a matter of great concern. Therefore, new highly sensitive and convenient Pb2+ measurement schemes are necessary, especially for in-situ measurements at a low-cost. Within this work dye/ionophore/Pb2+ co-extraction and effective water phase de-colorization was utilized for highly sensitive lead measurements and sub-ppb naked-eye detection. A low-cost ionophore Benzo-18-Crown-6-ether was used, and a simple test-tube mix and separate procedure was developed. Instrumental detection limits were in the low ppt region (LOD=3, LOQ=10), and naked-eye detection was 500 ppt. Note, however, that this sensing scheme still has improvement potential as concentrations of fluorophore and ionophore were not optimized. Artificial tap-water samples, leached by a standardized method, demonstrated drinking water application. Implications for this method are convenient in-situ lead ion measurements.


Sign in / Sign up

Export Citation Format

Share Document