scholarly journals Current Thoughts of Notch’s Role in Myoblast Regulation and Muscle-Associated Disease

Author(s):  
Jeffrey C. Gerrard ◽  
Jamison P. Hay ◽  
Ryan N. Adams ◽  
James C. Williams ◽  
Joshua R. Huot ◽  
...  

The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.

2020 ◽  
Vol 28 ◽  
Author(s):  
Fei Shao ◽  
Xiaonan Pang ◽  
Gyeong Hun Baeg

Abstract:: Breast cancer is the most common malignant tumor in women worldwide. Traditional ways of treatment, includ-ing radiotherapy and endocrine therapy, for breast cancer have inevitable side effects. In recent decades, targeted therapies for breast cancer have rapidly advanced and shown a promising future. The JAK/STAT signaling pathway has been shown to play important roles in tumorigenesis, maintenance and metastasis of breast cancer. Hence, many small molecule inhibi-tors of JAK and STAT proteins have been developed. These inhibitors exhibit potent inhibitory effects on breast cancer in both cellular and animal models, and even some of them have already been in clinical trials. This review article discussed the JAK/STAT signal transduction pathway in the pathogenesis of breast cancer, and the potential for the application of JAK/STAT inhibitors in breast cancer treatment.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2020 ◽  
Vol 19 (4) ◽  
pp. 248-256
Author(s):  
Yangmin Zheng ◽  
Ziping Han ◽  
Haiping Zhao ◽  
Yumin Luo

Conclusion: Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xuemei Shen ◽  
Jia Tang ◽  
Rui Jiang ◽  
Xiaogang Wang ◽  
Zhaoxin Yang ◽  
...  

AbstractMany novel non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in various physiological and pathological processes. The PI3K/AKT signaling pathway is important for its role in regulating skeletal muscle development. In this study, molecular and biochemical assays were used to confirm the role of miRNA-145 (miR-145) in myoblast proliferation and apoptosis. Based on sequencing data and bioinformatics analysis, we identified a new circRILPL1, which acts as a sponge for miR-145. The interactions between circRILPL1 and miR-145 were examined by bioinformatics, a luciferase assay, and RNA immunoprecipitation. Mechanistically, knockdown or exogenous expression of circRILPL1 in the primary myoblasts was performed to prove the functional significance of circRILPL1. We investigated the inhibitory effect of miR-145 on myoblast proliferation by targeting IGF1R to regulate the PI3K/AKT signaling pathway. A novel circRILPL1 was identified that could sponge miR-145 and is related to AKT activation. In addition, circRILPL1 was positively correlated with muscle proliferation and differentiation in vitro and could inhibit cell apoptosis. The newly identified circRILPL1 functions as a miR-145 sponge to regulate the IGF1R gene and rescue the inhibitory effect of miR-145 on the PI3K/AKT signaling pathway, thereby promoting myoblast growth.


2009 ◽  
Vol 29 (11) ◽  
pp. 3173-3185 ◽  
Author(s):  
André Kleinridders ◽  
Hans-Martin Pogoda ◽  
Sigrid Irlenbusch ◽  
Neil Smyth ◽  
Csaba Koncz ◽  
...  

ABSTRACT PLRG1, an evolutionarily conserved component of the spliceosome, forms a complex with Pso4/SNEV/Prp19 and the cell division and cycle 5 homolog (CDC5L) that is involved in both pre-mRNA splicing and DNA repair. Here, we show that the inactivation of PLRG1 in mice results in embryonic lethality at 1.5 days postfertilization. Studies of heart- and neuron-specific PLRG1 knockout mice further reveal an essential role of PLRG1 in adult tissue homeostasis and the suppression of apoptosis. PLRG1-deficient mouse embryonic fibroblasts (MEFs) fail to progress through S phase upon serum stimulation and exhibit increased rates of apoptosis. PLRG1 deficiency causes enhanced p53 phosphorylation and stabilization in the presence of increased γ-H2AX immunoreactivity as an indicator of an activated DNA damage response. p53 downregulation rescues lethality in both PLRG1-deficient MEFs and zebrafish in vivo, showing that apoptosis resulting from PLRG1 deficiency is p53 dependent. Moreover, the deletion of PLRG1 results in the relocation of its interaction partner CDC5L from the nucleus to the cytoplasm without general alterations in pre-mRNA splicing. Taken together, the results of this study identify PLRG1 as a critical nuclear regulator of p53-dependent cell cycle progression and apoptosis during both embryonic development and adult tissue homeostasis.


2018 ◽  
Vol 28 (22) ◽  
pp. 3691-3699.e3 ◽  
Author(s):  
D. Magnus Eklund ◽  
Masakazu Kanei ◽  
Eduardo Flores-Sandoval ◽  
Kimitsune Ishizaki ◽  
Ryuichi Nishihama ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 26-28
Author(s):  
Filipe Cabral ◽  
◽  
Pedro Barata ◽  

Muscle injuries are very common in sports medicine. Frequently the muscle repair process ends in the formation of a fibrotic scar, that not only limits the complete functional recovery, but also increases the likelihood of injury recurrence. TGF-β1 is the main profibrogenic factor involved in this healing process. By blocking its activity, Losartan has proven it efficacy in reducing fibrosis and increasing regenerative and functional capacity post muscle injury. Therefore, its use should be considered as an alternative therapeutic for this kind of injuries.


2016 ◽  
Vol 11 (8) ◽  
pp. 1293 ◽  
Author(s):  
Gang Li ◽  
Qing-shan Li ◽  
Wen-bin Li ◽  
Jian Wei ◽  
Wen-kai Chang ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 1045-1052
Author(s):  
Yufeng Wang ◽  
Zheng Cao ◽  
Fengjia Liu ◽  
Yuejian Ou

Abstract Wnt/β‐catenin signaling is an evolutionarily conserved pathway and plays a crucial role in regulating cancer cell proliferation and tumorigenesis. However, the molecular mechanism behind the Wnt/β‐catenin signaling-mediated carcinogenesis and apoptosis resistance in oral squamous cell carcinoma is not well characterized so far. In the present study, we have investigated the effect of β‐catenin depletion of the perversely activated Wnt/β-catenin signaling pathway on apoptosis resistance and tumorigenesis of the human OSCC cell line SCC-55. RT-PCR and western blot analysis demonstrated that the Wnt/β-catenin signaling pathway and its downstream targets such as DKK1 and AXIN2 are aberrantly activated in SCC-55 cells. Furthermore, upon silencing (RNA interference) of β‐catenin in SCC-55, cells became more sensitive toward the chemotherapeutic drugs and thus resulted in apoptotic cell death. Meanwhile, flow cytometry analysis confirmed the enhanced apoptosis and activation of caspases in β‐catenin RNAi cells. Besides ensuing β-catenin–siRNA transfection, the cell proliferation and cancer colony generating efficiencies are significantly impeded compared to the non-transfected cells. Furthermore, the tumorigenicity was inhibited by the downregulation of OCT-4 in β‐catenin-silenced SCC-55 cells. Altogether, Wnt/β‐catenin signaling could potentially target anti-cancer drugs to induce apoptosis and achieve a better clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document