scholarly journals Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils

Author(s):  
Giuseppe Di Vito Nolfi ◽  
Katia Gallucci ◽  
Leucio Rossi

Non-renewable fossil fuels and the air pollution associated with their combustion have made it necessary to develop fuels that are environmentally friendly and produced from renewable sources. In addition, global warming and climate change have brought to the attention of many countries the need to develop programs and reforms, such as the 2030 Agenda of the United Nations and the European Green Deal, that finance and promote the conversion of all socio-economic activities in favor of sustainable and environmentally friendly development. These major projects include the development of non-polluting biofuels derived from renewable sources. Vegetable oils are a renewable source widely used to produce biofuels due to their high energy density and similar chemical composition to petroleum derivatives, making them the perfect feedstock for biofuel production. Green diesel and other hydrocarbon biofuels, obtained by the catalytic deoxygenation of vegetable oils, represent a sustainable alternative to mineral diesel, as they have physico-chemical properties similar to derived oil fuels. The catalyst, temperature, hydrogen pressure, and the type of vegetable oil can influence the type of biofuel obtained and its properties. The main aspects discussed in this review include the influence of the catalyst and reaction conditions on the catalytic deoxygenation reaction.

Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Author(s):  
Zefang Yang ◽  
Lin Zhu ◽  
Chao-Nan Lv ◽  
Rui Zhang ◽  
Hai-Yan Wang ◽  
...  

Molybdenum disulfide, a typically layered transition metal chalcogenide, is considered one of the promising electrode candidates for next-generation high energy density batteries owing to its tunable physical and chemical properties,...


Author(s):  
Zhenyu Hu ◽  
Liping Hao ◽  
Fan Quan ◽  
Rui Guo

The demand for the development of clean and efficient energy is becoming more and more pressing due to depleting fossil fuels and environmental concerns. Hydrogen is a high energy density...


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Alan López-Rosales ◽  
Katia Ancona-Canché ◽  
Juan Chavarria-Hernandez ◽  
Felipe Barahona-Pérez ◽  
Tanit Toledano-Thompson ◽  
...  

Marine microalgae are a promising feedstock for biofuel production given their high growth rates and biomass production together with cost reductions due to the use of seawater for culture preparation. However, different microalgae species produce different families of compounds. Some compounds could be used directly as fuels, while others require thermochemical processing to obtain quality biofuels. This work focuses on the characterization of three marine microalgae strains native in Mexico and reported for the first time. Ultrastructure and phylogenetic analysis, suggested that they belong to Nannochloropsis sp. (NSRE-1 and NSRE-2) and Nannochloris sp. (NRRE-1). The composition of their lipid fractions included hydrocarbons, triacylglycerides (TAGs), free fatty acids (FFAs) and terpenes. Based on theoretical estimations from TAG and FFA composition, the potential biodiesels were found to comply with six of the seven estimated properties (ASTM D6751 and EN 14214). On the other hand, hydrocarbons and terpenes synthesized by the strains have outstanding potential as precursors for the production of other renewable fuels, mainly green diesel and bio-jet fuel, which are “drop-in” fuels with quality properties similar to fossil fuels. The validity of this theoretical analysis was demonstrated for the oxygenates of strain NSRE-2, which were experimentally hydrodeoxygenated, obtaining a high-quality renewable diesel as the reaction product.


2021 ◽  
Vol 30 (4) ◽  
pp. 28-29
Author(s):  
Krishnakanth Sada

The transition from fossil fuels to carbon-free forms of renewable energy has become a spotlight with the revolutionary emergence of efficient electrochemical energy storage systems. It enables us to realize electric mobility empowered by Li-ion battery technology. Nevertheless, for the past three decades, the development of battery technology has been very sluggish, and it warrants new strategies to meet the growing demand for high energy density. In this spirit, we are working to develop versatile battery cathodes, which can be used for electrochemical and electrocatalytic applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3380
Author(s):  
Wenmin Wang ◽  
Bing Li ◽  
Hsin-Ju Yang ◽  
Yuzhi Liu ◽  
Lakshmanan Gurusamy ◽  
...  

Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core-shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g−1 h−1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron-hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.


2020 ◽  
Vol 17 (Issue 1) ◽  
pp. 16-24
Author(s):  
Soumya Mukherjee

CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications.


2019 ◽  
Vol 958 ◽  
pp. 11-16
Author(s):  
Fabiana Medeiros do Nascimento Silva ◽  
Erivaldo Genuíno Lima ◽  
Tellys Lins de Almeida Barbosa ◽  
Meiry Gláucia Freire Rodrigues

The world's energy production is generated mainly from fossil fuels, so it is important to develop fuels from renewable sources. Growing caution with the environmental impact imposes restrictions on emissions from the combustion of fossil fuels. With increasing human population and expanding economies in both developing and developed countries, there is an increase in energy consumption and production. The need arises to supply this high energy production with a renewable and reliable source fuel [1]. These facts have stimulated research by alternative sources for the development of renewable fuels. One of the most promising fuels is biodiesel, an alternative to petroleum diesel from high-quality renewable sources, which allows the replacement of fossil diesel oil without modifications to the vehicle's engine [2, 3]. In recent years, methyl esters of fatty acids derived from vegetable oil have gained considerable attention as alternative fuel [4, 5].


Sign in / Sign up

Export Citation Format

Share Document