scholarly journals Maximizing Impacts of Remote Sensing Surveys in Slope Stability—A Novel Method to Incorporate Discontinuities into Machine Learning Landslide Prediction

2021 ◽  
Vol 10 (4) ◽  
pp. 232
Author(s):  
Lingfeng He ◽  
John Coggan ◽  
Mirko Francioni ◽  
Matthew Eyre

This paper proposes a novel method to incorporate unfavorable orientations of discontinuities into machine learning (ML) landslide prediction by using GIS-based kinematic analysis. Discontinuities, detected from photogrammetric and aerial LiDAR surveys, were included in the assessment of potential rock slope instability through GIS-based kinematic analysis. Results from the kinematic analysis, coupled with several commonly used landslide influencing factors, were adopted as input variables in ML models to predict landslides. In this paper, various ML models, such as random forest (RF), support vector machine (SVM), multilayer perceptron (MLP) and deep learning neural network (DLNN) models were evaluated. Results of two validation methods (confusion matrix and ROC curve) show that the involvement of discontinuity-related variables significantly improved the landslide predictive capability of these four models. Their addition demonstrated a minimum of 6% and 4% increase in the overall prediction accuracy and the area under curve (AUC), respectively. In addition, frequency ratio (FR) analysis showed good consistency between landslide probability that was characterized by FR values and discontinuity-related variables, indicating a high correlation. Both results of model validation and FR analysis highlight that inclusion of discontinuities into ML models can improve landslide prediction accuracy.

2021 ◽  
Vol 13 (22) ◽  
pp. 4515
Author(s):  
Rocío N. Ramos-Bernal ◽  
René Vázquez-Jiménez ◽  
Claudia A. Cantú-Ramírez ◽  
Antonio Alarcón-Paredes ◽  
Gustavo A. Alonso-Silverio ◽  
...  

Landslides are recognized as high-impact natural hazards in different regions around the world; therefore, they are extensively researched by experts. Landslide inventories are essential to identify areas that are likely to be affected in the future, thereby enabling interventions to prevent loss of life. Today, through combined approaches, such as remote sensing and machine learning techniques, it is possible to apply algorithms that use data derived from satellite images to produce landslide inventories. This work presents the performance of five machine learning methods—k-nearest neighbor (KNN), stochastic gradient descendent (SGD), support vector machine radial basis function (SVM RBF Kernel), support vector machine (SVM linear kernel), and AdaBoost—in landslide detection in a zone of the state of Guerrero in southern Mexico, using continuous change maps and primary landslide factors, such as slope angle, terrain orientation (aspect), and lithology, as inputs. The models were trained with 2/3 of ground truth samples of 671 slidden/non-slidden polygons. The obtained inventory maps were evaluated with the remaining 1/3 of ground truth samples by generating a confusion matrix and applying the Kappa concordance coefficient, accuracy, precision, recall, and F1 score as evaluation metrics, as well as omission and commission errors. According to the results, the AdaBoost classifier reached greater spatial and statistical coherence than the other implemented methods. The best input layer combination for detection was the continuous change maps obtained by the linear regression and image differencing detection methods, together with the slope angle, aspect, and lithology conditioning factors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wentao Li ◽  
Qingxiang Wang ◽  
Xin Liu ◽  
Yanhong Yu

Abstract Background Depression, a common worldwide mental disorder, which brings huge challenges to family and social burden around the world is different from fluctuant emotion and psychological pressure in their daily life. Although body signs have been shown to present manifestations of depression in general, few researches focus on whole body kinematic cues with the help of machine learning methods to aid depression recognition. Using the Kinect V2 device to record participants’ simple kinematic skeleton data of the participant’s body joints, the presented spatial features and low-level features is directly extracted from the record original Kinect-3D coordinates. This research aimed to constructed machine learning model with the preprocessed data importing, which could be used for depression automatic classification. Methods Considering some patients’ conditions and current status and refer to psychiatrists’ advices, simple and significant designed stimulus task will lead human skeleton data collection job. With original Kinect skeleton data extracting and preprocessing, the proposed experiment demonstrated four strong machine learning tools: Support Vector Machine, Logistic Regression, Random Forest and Gradient Boosting. Using the precision, recall, sensitivity, specificity, roc-curve, confusion matrix et.al, indicators were calculated as the measurement of methods, which were commonly used to evaluate classification methodologies. Results Across screened 64 pairs with age and gender totally matching in depression and control group, and Gradient Boosting achieved the best performance with the prediction accuracy of 76.92%. Sorted by female (54.69%) and male for the gender-based depression recognition, we applied best performance classifier Gradient Boosting got prediction accuracy of 66.67% in the male group, and 71.73% in the female group. Utilizing the best model Gradient Boosting for age-based classification, prediction accuracy got 76.92% in the older group (age >40, 50% of total) and 53.85% accuracy in the younger group (age <= 40). Conclusion The depression and non-depression individuals can be well classified by computational models using Kinect captured skeletal data. The Gradient Boosting, an excellent machine learning tool, get the performance in the four methods we demonstrated. Meanwhile, in the gender-based depression classification also gets reasonable accuracy. In particular, the recognition results of the old group are significantly better than that of the young group. All these findings suggest that kinematic skeletal data based depression recognition can be applied as an effective tool for assisting in depression analysis.


2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


2017 ◽  
Author(s):  
Manato Akiyama ◽  
Kengo Sato ◽  
Yasubumi Sakakibara

AbstractMotivation: A popular approach for predicting RNA secondary structure is the thermodynamic nearest neighbor model that finds a thermodynamically most stable secondary structure with the minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such model has been reported.Results: In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning based weighted approach. Ourfine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the ℓ1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed.Availability: The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold.Contact:[email protected]


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Paul Litvak ◽  
Jeevan Medikonda ◽  
Girish Menon ◽  
Pitchaiah Mandava

Background: Patients suffering from subarachnoid hemorrhage (SAH) have poor long-term outcomes. There are predictive models for ischemic and hemorrhagic stroke. However, there is paucity of models for SAH. Machine learning concepts were applied to build multi-stage Neural Networks (NN), Support Vector Machines (SVM) and Keras/Tensor Flow models to predict SAH outcomes. Methods: A database of ~800 aneurysmal SAH patients from Kasturba Medical College was utilized. Baseline variables of World Federation of Neurosurgeons 5-point scale (WFNS 1-5), age, gender, and presence/absence of hypertension and diabetes were considered in Stage 1. Stage 2 included all Stage 1 variables along with presence/absence of radiologic signs vasospasm and ischemia. Stage 3 includes earlier 2 stages and discharge Glasgow Outcome Scale (GOS 1-5). GOS at 3 months was predicted using 2-layer NN/SVM/Keras-TensorFlow models on the five point categorical scale as well as dichotomized to dead/alive and favorable (GOS 4-5) or unfavorable (GOS 1-3). Prediction accuracy of models was compared to the recorded GOS. Results: Prediction accuracy shown as percentages (See Table) for all three stages was similar for SVM, NN and Keras/TensorFlow models. Accuracy was remarkably higher with dichotomization compared to the complete five point GOS categorical scale. Conclusions: SVM, NN, and Keras-TensorFlow based machine learning models can be used to predict SAH outcomes to a high degree of accuracy. These powerful predictive models can be used to prognosticate and select patients into trials.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6491
Author(s):  
Le Zhang ◽  
Jeyan Thiyagalingam ◽  
Anke Xue ◽  
Shuwen Xu

Classification of clutter, especially in the context of shore based radars, plays a crucial role in several applications. However, the task of distinguishing and classifying the sea clutter from land clutter has been historically performed using clutter models and/or coastal maps. In this paper, we propose two machine learning, particularly neural network, based approaches for sea-land clutter separation, namely the regularized randomized neural network (RRNN) and the kernel ridge regression neural network (KRR). We use a number of features, such as energy variation, discrete signal amplitude change frequency, autocorrelation performance, and other statistical characteristics of the respective clutter distributions, to improve the performance of the classification. Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter data for land and real clutter data from sea, offers improved classification accuracy. More specifically, the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional support vector machine and extreme learning based solutions.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34196-34206
Author(s):  
Zhe Li ◽  
Shunhao Huang ◽  
Juan Chen

Establish soft measurement model of total chlorine: cyclic voltammetry curves, principal component analysis and support vector regression.


Sign in / Sign up

Export Citation Format

Share Document