scholarly journals Visual Exposure of Rock Outcrops in the Context of a Forest Disease Outbreak Simulation Based on a Canopy Height Model and Spectral Information Acquired by an Unmanned Aerial Vehicle

2020 ◽  
Vol 9 (5) ◽  
pp. 325
Author(s):  
Marie Balková ◽  
Aleš Bajer ◽  
Zdeněk Patočka ◽  
Tomáš Mikita

This research was focused on the study of visual exposure evolution in the locality of the Drátenická skála nature monument (in the Czech Republic) and the surrounding forest complex in terms of history and through modelling for further possible stand development. The local forests underwent conversion from a natural fir-beech composition to an intensive spruce monoculture with few insect pests or windbreak events to an actual bark beetle infestation. Historic maps, landscape paintings, photographs, and orthophotos served as the basic materials for the illustration of the past situation. Further development was modelled using canopy height models and spectral properties captured by unmanned aerial vehicles (UAVs). As an example, the possible situation of total mortality among coniferous spruce trees after a bark beetle outbreak was modelled. Other options and a practical use of such preprocessed data are, for example, a model for opening and transforming the stands around the rock as one of the ongoing outcrop management trends in the protected landscape area (PLA) of Žďárské vrchy.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Vol 13 (15) ◽  
pp. 3042
Author(s):  
Kateřina Gdulová ◽  
Jana Marešová ◽  
Vojtěch Barták ◽  
Marta Szostak ◽  
Jaroslav Červenka ◽  
...  

The availability of global digital elevation models (DEMs) from multiple time points allows their combination for analysing vegetation changes. The combination of models (e.g., SRTM and TanDEM-X) can contain errors, which can, due to their synergistic effects, yield incorrect results. We used a high-resolution LiDAR-derived digital surface model (DSM) to evaluate the accuracy of canopy height estimates of the aforementioned global DEMs. In addition, we subtracted SRTM and TanDEM-X data at 90 and 30 m resolutions, respectively, to detect deforestation caused by bark beetle disturbance and evaluated the associations of their difference with terrain characteristics. The study areas covered three Central European mountain ranges and their surrounding areas: Bohemian Forest, Erzgebirge, and Giant Mountains. We found that vertical bias of SRTM and TanDEM-X, relative to the canopy height, is similar with negative values of up to −2.5 m and LE90s below 7.8 m in non-forest areas. In forests, the vertical bias of SRTM and TanDEM-X ranged from −0.5 to 4.1 m and LE90s from 7.2 to 11.0 m, respectively. The height differences between SRTM and TanDEM-X show moderate dependence on the slope and its orientation. LE90s for TDX-SRTM differences tended to be smaller for east-facing than for west-facing slopes, and varied, with aspect, by up to 1.5 m in non-forest areas and 3 m in forests, respectively. Finally, subtracting SRTM and NASA DEMs from TanDEM-X and Copernicus DEMs, respectively, successfully identified large areas of deforestation caused by hurricane Kyril in 2007 and a subsequent bark beetle disturbance in the Bohemian Forest. However, local errors in TanDEM-X, associated mainly with forest-covered west-facing slopes, resulted in erroneous identification of deforestation. Therefore, caution is needed when combining SRTM and TanDEM-X data in multitemporal studies in a mountain environment. Still, we can conclude that SRTM and TanDEM-X data represent suitable near global sources for the identification of deforestation in the period between the time points of their acquisition.


2021 ◽  
Vol 13 (4) ◽  
pp. 656
Author(s):  
Xiang Zhang ◽  
Yuhai Bao ◽  
Dongliang Wang ◽  
Xiaoping Xin ◽  
Lei Ding ◽  
...  

The accurate estimation of grassland vegetation parameters at a high spatial resolution is important for the sustainable management of grassland areas. Unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) sensors with a single laser beam emission capability can rapidly detect grassland vegetation parameters, such as canopy height, fractional vegetation coverage (FVC) and aboveground biomass (AGB). However, there have been few reports on the ability to detect grassland vegetation parameters based on RIEGL VUX-1 UAV LiDAR (Riegl VUX-1) systems. In this paper, we investigated the ability of Riegl VUX-1 to model the AGB at a 0.1 m pixel resolution in the Hulun Buir grazing platform under different grazing intensities. The LiDAR-derived minimum, mean, and maximum canopy heights and FVC were used to estimate the AGB across the entire grazing platform. The flight height of the LiDAR-derived vegetation parameters was also analyzed. The following results were determined: (1) The Riegl VUX-1-derived AGB was predicted to range from 29 g/m2 to 563 g/m2 under different grazing conditions. (2) The LiDAR-derived maximum canopy height and FVC were the best predictors of grassland AGB (R2 = 0.54, root-mean-square error (RMSE) = 64.76 g/m2). (3) For different UAV flight altitudes from 40 m to 110 m, different flight heights showed no major effect on the derived canopy height. The LiDAR-derived canopy height decreased from 9.19 cm to 8.17 cm, and the standard deviation of the LiDAR-derived canopy height decreased from 3.31 cm to 2.35 cm with increasing UAV flight altitudes. These conclusions could be useful for estimating grasslands in smaller areas and serving as references for other remote sensing datasets for estimating grasslands in larger areas.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4644 ◽  
Author(s):  
Naus ◽  
Marchel ◽  
Szymak ◽  
Nowak

The paper presents the results of research on assessing the accuracy of angular position measurement relative to the sea horizon using a camera mounted on an unmanned bathymetric surveying vehicle of the Unmanned Surface Vehicle (USV) or Unmanned Aerial Vehicle (UAV) type. The first part of the article presents the essence of the problem. The rules of taking the angular position of the vehicle into account in bathymetric surveys and the general concept of the two-camera tilt compensator were described. The second part presents a mathematical description of the meters characterizing a resolution and a mean error of measurements, made on the base of the horizon line image, recorded with an optical system with a Complementary Metal-Oxide Semiconductor (CMOS) matrix. The phenomenon of the horizon line curvature in the image projected onto the matrix that appears with the increase of the camera height has been characterized. The third part contains an example of a detailed analysis of selected cameras mounted on UAVs manufactured by DJI, carried out using the proposed meters. The obtained results including measurement resolutions of a single-pixel and mean errors of the horizon line slope measurement were presented in the form of many tables and charts with extensive comments. The final part presents the general conclusions from the performed research and a proposal of directions for their further development.


2021 ◽  
Author(s):  
Xin Lin ◽  
Chungan Li ◽  
Mei Zhou ◽  
Wenhai Liang ◽  
Biao Li

Abstract This study investigated the short-term spatial variability of an mangrove patch, located in the Pearl Bay in Guangxi, China. Unmanned aerial vehicle (UAV) imagery covering the period from March 2015 to October 2017 were used and the following models were developed: two annual ultra-high resolution spatial resolution digital orthophoto maps (DOMs), two digital elevation models (DEMs), two digital surface models (DSMs), two canopy height models (CHMs), and a canopy height difference model (d-CHM). Using these models, the spatial dynamics of the extent and canopy height of the patch were analyzed. The resolution of the DOMs was 0.1 m, with an average geometrical error of 0.17 m and a maximum error of 0.44 m. The resolutions of DEMs, DSMs, CHMs, d-CHM were all 1 m. The average elevation errors of CHM in 2015 and 2017 were 0.002 m and -0.001 m, respectively, with maximum absolute errors of 0.034 m and 0.030 m, respectively. The average elevation error of d-CHM was -0.003 m and the maximum absolute error was 0.036 m, and the data quality were rated as good. From 2015 to 2017, the area of the mangrove patch increased from 8.16 ha to 8.79 ha, with an average annual increase of 3.7%. Specifically, the areas of expansion, shrinkage, and maximum seaward expansion were 6356 m2, 19 m2, and 24 m, respectively. The driving factor for the variability was natural processes. Stand canopy height exhibited a particular trend of decrease from northwest to southeast (horizontal; parallel to the seawall) and from the land to the sea (vertically; perpendicular to the seawall). From 2015 to 2017, 88.2% of the patch area showed increased canopy height, with an average increase of 0.78 m and a maximum increase of 3.2 m. In contrast, 11.8% of the patch area showed decreased canopy height with a maximum decrease of 3.1 m. The main reason for the decrease in canopy height was the death of trees caused by serious insect plagues. On the other hand, the reason for the increase in height could be attributed to the natural growth of mangrove trees, but further studies are required to verify the cause. UAV remote sensing has an incomparable advantage over traditional methods in that it provides extremely detailed and highly accurate information for in-depth study of the spatial evolution of mangrove patches, which would significantly contribute towards the protection and management of mangroves.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 146 ◽  
Author(s):  
Longfei Zhou ◽  
Xiaohe Gu ◽  
Shu Cheng ◽  
Guijun Yang ◽  
Meiyan Shu ◽  
...  

Lodging stress seriously affects the yield, quality, and mechanical harvesting of maize, and is a major natural disaster causing maize yield reduction. The aim of this study was to obtain light detection and ranging (LiDAR) data of lodged maize using an unmanned aerial vehicle (UAV) equipped with a RIEGL VUX-1UAV sensor to analyze changes in the vertical structure of maize plants with different degrees of lodging, and thus to use plant height to quantitatively study maize lodging. Based on the UAV-LiDAR data, the height of the maize canopy was retrieved using a canopy height model to determine the height of the lodged maize canopy at different times. The profiles were analyzed to assess changes in maize plant height with different degrees of lodging. The differences in plant height growth of maize with different degrees of lodging were evaluated to determine the plant height recovery ability of maize with different degrees of lodging. Furthermore, the correlation between plant heights measured on the ground and LiDAR-estimated plant heights was used to verify the accuracy of plant height estimation. The results show that UAV-LiDAR data can be used to achieve maize canopy height estimation, with plant height estimation accuracy parameters of R2 = 0.964, RMSE = 0.127, and nRMSE = 7.449%. Thus, it can reflect changes of plant height of lodging maize and the recovery ability of plant height of different lodging types. Plant height can be used to quantitatively evaluate the lodging degree of maize. Studies have shown that the use of UAV-LiDAR data can effectively estimate plant heights and confirm the feasibility of LiDAR data in crop lodging monitoring.


Seminar.net ◽  
2015 ◽  
Vol 11 (2) ◽  
Author(s):  
Tuulikki Keskitalo ◽  
Heli Ruokamo

The aim of this study was to design a pedagogical model for a simulation-based learning environment (SBLE) in healthcare. Currently, simulation and virtual reality are a major focus in healthcare education. However, when and how these learning environments should be applied is not well-known. The present study tries to fill that gap. We pose the following research question: What kind of pedagogical model supports and facilitates students’ meaningful learning in SBLEs? The study used design-based research (DBR) and case study approaches. We report the results from our second case study and how the pedagogical model was developed based on the lessons learned. The study involved nine facilitators and 25 students. Data were collected and analysed using mixed methods. The main result of this study is the refined pedagogical model. The model is based on the socio-cultural theory of learning and characteristics of meaningful learning as well as previous pedagogical models. The model will provide a more holistic and meaningful approach to teaching and learning in SBLEs. However, the model requires evidence and further development.


2020 ◽  
Vol 12 (9) ◽  
pp. 1357 ◽  
Author(s):  
Maitiniyazi Maimaitijiang ◽  
Vasit Sagan ◽  
Paheding Sidike ◽  
Ahmad M. Daloye ◽  
Hasanjan Erkbol ◽  
...  

Non-destructive crop monitoring over large areas with high efficiency is of great significance in precision agriculture and plant phenotyping, as well as decision making with regards to grain policy and food security. The goal of this research was to assess the potential of combining canopy spectral information with canopy structure features for crop monitoring using satellite/unmanned aerial vehicle (UAV) data fusion and machine learning. Worldview-2/3 satellite data were tasked synchronized with high-resolution RGB image collection using an inexpensive unmanned aerial vehicle (UAV) at a heterogeneous soybean (Glycine max (L.) Merr.) field. Canopy spectral information (i.e., vegetation indices) was extracted from Worldview-2/3 data, and canopy structure information (i.e., canopy height and canopy cover) was derived from UAV RGB imagery. Canopy spectral and structure information and their combination were used to predict soybean leaf area index (LAI), aboveground biomass (AGB), and leaf nitrogen concentration (N) using partial least squares regression (PLSR), random forest regression (RFR), support vector regression (SVR), and extreme learning regression (ELR) with a newly proposed activation function. The results revealed that: (1) UAV imagery-derived high-resolution and detailed canopy structure features, canopy height, and canopy coverage were significant indicators for crop growth monitoring, (2) integration of satellite imagery-based rich canopy spectral information with UAV-derived canopy structural features using machine learning improved soybean AGB, LAI, and leaf N estimation on using satellite or UAV data alone, (3) adding canopy structure information to spectral features reduced background soil effect and asymptotic saturation issue to some extent and led to better model performance, (4) the ELR model with the newly proposed activated function slightly outperformed PLSR, RFR, and SVR in the prediction of AGB and LAI, while RFR provided the best result for N estimation. This study introduced opportunities and limitations of satellite/UAV data fusion using machine learning in the context of crop monitoring.


2020 ◽  
Vol 10 (11) ◽  
pp. 3736
Author(s):  
Ashish Kumar ◽  
Sugjoon Yoon ◽  
V.R.Sanal Kumar

One of the major limitations of existing unmanned aerial vehicles is limited flight endurance. In this study, we designed an innovative uninterrupted electromagnetic propulsion device for high-endurance missions of a quadcopter drone for the lucrative exploration of earth and other planets with atmospheres. As an airborne platform, this device could achieve scientific objectives better than state-of-the-art revolving spacecraft and walking robots, without any terrain limitation. We developed a mixed reality simulation based on a quadcopter drone and an X-Plane flight simulator. A computer with the X-Plane flight simulator represented the virtual part, and a real quadcopter operating within an airfield represented the real part. In the first phase of our study, we developed a connection interface between the X-Plane flight simulator and the quadcopter ground control station in MATLAB. The experimental results generated from the Earth’s atmosphere show that the flight data from the real and the virtual quadcopters are precise and very close to the prescribed target. The proof-of-concept of the mixed reality simulation of the quadcopter at the Earth atmosphere was verified and validated through several experimental flights of the F450 spider quadcopter with a Pixhawk flight controller with the restricted endurance at the airfield location of Hangang Drone Park in Seoul, South Korea. We concluded that the new generation drones integrated with lightweight electromagnetic propulsion devices are a viable option for achieving unrestricted flight endurance with improved payload capability for Earth and other planetary explorations with the aid of mixed reality simulation to meet the mission flight path demands. This study provides insight into mixed reality simulation aiming for Mars explorations and high-endurance missions in the Earth’s atmosphere with credibility using quadcopter drones regulated by dual-head electromagnetic propulsion devices.


Sign in / Sign up

Export Citation Format

Share Document