scholarly journals Granulin A Synergizes with Cisplatin to Inhibit the Growth of Human Hepatocellular Carcinoma

2018 ◽  
Vol 19 (10) ◽  
pp. 3060 ◽  
Author(s):  
Gan Qiao ◽  
Huanli Xu ◽  
Cong Li ◽  
Xiao Li ◽  
Ammad Farooqi ◽  
...  

Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, due to resistance and toxicity, the application of cisplatin for the treatment of hepatocellular carcinoma (HCC) is limited. Our previous study has shown that granulin A (GRN A), an anticancer peptide, is able to interact with enolase1 (ENO1) and inhibit the growth of HCC in vitro. In the present study, we studied the synergistic effect of the combination of cisplatin and GRN A for the inhibitory effect on HCC. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and Chou-Talalay approaches revealed that the combination of GRN A and cisplatin displayed potent synergistic effect. The colony formation and cell viability of HCC cells were inhibited significantly in cells treated with the combination of cisplatin and GRN A, compared with cells treated with cisplatin or GRN A alone. Overexpression of ENO1 diminished the synergistic effect of GRN A and cisplatin in HCC cells. The combination of the two drugs exhibited a more obvious inhibitory effect on cancer cell apoptosis, as analyzed by the cytometry flow, mitochondrial membrane potential (MMP) and western blot analysis. An in vivo study confirmed that the combined use of the two drugs displayed more potent antitumor activity compared to mice treated with cisplatin and GRN A alone; the inhibitory rate of tumor growth was 65.46% and 68.94%, respectively, in mice treated with GRN A and cisplatin. However, the inhibitory rate increased to 86.63% in mice treated with the combination of the two drugs. This study provides evidence that the combination of GRN A and cisplatin is able to sensitize the liver cancer to cisplatin, and that targeting ENO1 is a promising approach for enhancing the antitumor activity of cisplatin.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Haoting Sun ◽  
Chaoqun Wang ◽  
Beiyuan Hu ◽  
Xiaomei Gao ◽  
Tiantian Zou ◽  
...  

AbstractIntercellular cross-talk plays important roles in cancer progression and metastasis. Yet how these cancer cells interact with each other is still largely unknown. Exosomes released by tumor cells have been proved to be effective cell-to-cell signal mediators. We explored the functional roles of exosomes in metastasis and the potential prognostic values for hepatocellular carcinoma (HCC). Exosomes were extracted from HCC cells of different metastatic potentials. The metastatic effects of exosomes derived from highly metastatic HCC cells (HMH) were evaluated both in vitro and in vivo. Exosomal proteins were identified with iTRAQ mass spectrum and verified in cell lines, xenograft tumor samples, and functional analyses. Exosomes released by HMH significantly enhanced the in vitro invasion and in vivo metastasis of low metastatic HCC cells (LMH). S100 calcium-binding protein A4 (S100A4) was identified as a functional factor in exosomes derived from HMH. S100A4rich exosomes significantly promoted tumor metastasis both in vitro and in vivo compared with S100A4low exosomes or controls. Moreover, exosomal S100A4 could induce expression of osteopontin (OPN), along with other tumor metastasis/stemness-related genes. Exosomal S100A4 activated OPN transcription via STAT3 phosphorylation. HCC patients with high exosomal S100A4 in plasma also had a poorer prognosis. In conclusion, exosomes from HMH could promote the metastatic potential of LMH, and exosomal S100A4 is a key enhancer for HCC metastasis, activating STAT3 phosphorylation and up-regulating OPN expression. This suggested exosomal S100A4 to be a novel prognostic marker and therapeutic target for HCC metastasis.


Oncogenesis ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Ruize Gao ◽  
David Buechel ◽  
Ravi K. R. Kalathur ◽  
Marco F. Morini ◽  
Mairene Coto-Llerena ◽  
...  

AbstractUnderstanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Junjie Xu ◽  
Lin Ji ◽  
Yuelong Liang ◽  
Zhe Wan ◽  
Wei Zheng ◽  
...  

AbstractSorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.


2020 ◽  
Vol 21 (2) ◽  
pp. 472 ◽  
Author(s):  
Yuri Cho ◽  
Min Ji Park ◽  
Koeun Kim ◽  
Jae-Young Park ◽  
Jihye Kim ◽  
...  

Abstract: Background: Crosstalk between tumors and their microenvironment plays a crucial role in the progression of hepatocellular carcinoma (HCC). However, there is little existing information about the key signaling molecule that modulates tumor-stroma crosstalk. Methods: Complementary DNA (cDNA) microarray analysis was performed to identify the key molecule in tumor-stroma crosstalk. Subcutaneous xenograft in vivo murine model, immunoblotting, immunofluorescence, and real-time polymerase chain reaction using HCC cells and tissues were performed. Results: The key molecule, regenerating gene protein-3A (REG3A), was most significantly enhanced when coculturing HCC cells and activated human hepatic stellate cells (HSCs) (+8.2 log) compared with monoculturing HCC cells using cDNA microarray analysis. Downregulation of REG3A using small interfering RNA significantly decreased the proliferation of HSC-cocultured HCC cells in vitro and in vivo, and enhanced deoxycholic acid-induced HCC cell apoptosis. Crosstalk-induced REG3A upregulation was modulated by platelet-derived growth factor ββ (PDGF-ββ) in p42/44-dependent manner. REG3A mRNA levels in human HCC tissues were upregulated 1.8-fold compared with non-tumor tissues and positively correlated with PDGF-ββ levels. Conclusions: REG3A/p42/44 pathway/PDGF-ββ signaling plays a significant role in hepatocarcinogenesis via tumor-stroma crosstalk. Targeting REG3A is a potential novel therapeutic target for the management of HCCs by inhibiting crosstalk between HCC cells and HSCs.


2020 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored.Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism.Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decrease Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU.Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


2021 ◽  
Author(s):  
Liyuan Hao ◽  
Yinglin Guo ◽  
Qing Peng ◽  
Zhiqin Zhang ◽  
Shenghao Li ◽  
...  

Abstract Hepatocellular carcinoma (HCC) was one of the most malignant cancers in the world. Cisplatin (DDP) was one of the main chemotherapy drugs for HCC, but the mechanism of DDP treatment for HCC remains unclear. In this presentation, we found that DDP inhibited the growth of HCC cells and promoted the expression of PD-1 and its ligand PD-L1 in cancer cells. Meanwhile, flow cytometry analysis revealed that DDP enhanced PD-1-CD8+ T cells expression and decreased PD-1+CD8+ T cells expression. ELISA analysis suggested that DDP decreased TGF-β expression in vivo. Therefore, the study indicated that DDP enhanced PD-1 and PD-L1 expression and inhibited the growth of HCC.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


Sign in / Sign up

Export Citation Format

Share Document