scholarly journals The Selection of NFκB Inhibitors to Block Inflammation and Induce Sensitisation to FasL-Induced Apoptosis in HNSCC Cell Lines Is Critical for Their Use as a Prospective Cancer Therapy

2019 ◽  
Vol 20 (6) ◽  
pp. 1306 ◽  
Author(s):  
Mario Scheurer ◽  
Roman Brands ◽  
Mohamed El-Mesery ◽  
Stefan Hartmann ◽  
Urs Müller-Richter ◽  
...  

Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors—Cortisol, MLN4924, QNZ and TPCA1—on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted.

1998 ◽  
Vol 118 (4) ◽  
pp. 464-471 ◽  
Author(s):  
Richard L. Scher ◽  
Wilfred Saito ◽  
Richard K. Dodge ◽  
William J. Richtsmeier ◽  
Robert L. Fine

BACKGROUND: Squamous cell carcinoma of the head and neck (HNSCC) has a high incidence of recurrence and associated second primary malignancy. The retinoid 13- cis-retinoic acid has been shown to be effective as both a chemopreventive and chemotherapeutic agent for HNSCC, but often with treatment-limiting toxicity. The synthetic retinoid fenretinide (N-(4-hydroxyphenyl)retinamide) (HPR) has significant antiproliferative activity against a number of animal and human malignancies and has been used in clinical trials as a chemopreventive agent in patients with breast and prostate cancer and oral leukoplakia. HPR has been shown to have a toxicity profile lower than that for other retinoids used in clinical trials. PURPOSE: The aim of this study was to investigate the effect of HPR on the growth of HNSCC cell lines in vitro. METHODS: Four HNSCC cell lines (JHU-011-SCC, JHU-020-SCC, JHU-022-SCC, and FaDu) were treated with a range of concentrations of HPR for various times. After HPR exposure, cell viability was determined by tetrazolium dye (MTT) colorimetric assay, comparing cell survival with that of untreated control cells. HPR-induced apoptosis was determined by flow-cytometric deoxyribonucleic acid cell-cycle analysis, ultrastructural analysis with electron microscopy, and deoxyribonucleic acid fragmentation detected by gel electrophoresis. RESULTS: HPR caused significant growth inhibition in three of the four HNSCC cell lines in a dose- and time-dependent fashion. In two cell lines (JHU-011-SCC, JHU-020-SCC) a significant antiproliferative effect was achieved between 1 and 2.5 μ mol/L HPR after 72 hours of treatment. By deoxyribonucleic acid cell-cycle analysis, electron microscopy, and gel electrophoresis, HPR was shown to induce apoptosis in the JHU-011-SCC and JHU-020-SCC cell lines, but not in the FaDu cell line, which was insensitive to the growth inhibitory effect of HPR. CONCLUSIONS: This study has demonstrated that HPR reduces cell viability in HNSCC cells in vitro at clinically relevant doses, with the growth inhibition occurring through the induction of apoptosis.


2017 ◽  
Vol 118 (4) ◽  
pp. 128-138
Author(s):  
Jan Hartinger ◽  
Pavel Veselý ◽  
Martin Šíma ◽  
Irena Netíková ◽  
Eva Matoušková ◽  
...  

5-fluorouracil (5-FU) and capecitabine therapy is often accompanied by palmar-plantar erythrodysesthesia (PPE) which is manifestation of 5-FU toxicity in keratinocytes. The main mechanisms of 5-FU action are thymidylate synthase (TS) inhibition which can be abrogated by thymidine and strengthened by calciumfolinate (CF) and incorporation of fluorouridinetriphosphate into RNA which can be abrogated by uridine. For proper PPE treatment 5-FU mechanism of action in keratinocytes needs to be elucidated. We used the 5-FU toxicity modulators uridine, thymidine and CF to discover the mechanism of 5-FU action in human keratinocyte cell line HaCaT. To measure the cellular viability, we used MTT test and RTCA test. CF did not augment 5-FU toxicity and 5-FU toxicity was weakened by uridine. Therefore, the primary mechanism of 5-FU toxicity in keratinocytes is 5-FU incorporation into RNA. The uridine protective effect cannot fully develop in the presence of CF. Thymidine addition to 5-FU and uridine treated cells not only prevents the toxicity-augmenting CF effect but it also prolongs the 5-FU treated cells survival in comparison to uridine only. Therefore, it can be assumed that in the presence of uridine the 5-FU toxicity mechanism is switched from RNA incorporation to TS inhibition. Although particular 5-FU toxicity mechanisms were previously described in various cell types, this is the first time when various combinations of pyrimidine nucleosides and CF were used for 5-FU toxicity mechanism elucidation in human keratinocytes. We suggest that for PPE treatment ointment containing uridine and thymidine should be further clinically tested.


2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2012
Author(s):  
Kathryn M. Appleton ◽  
Charuta C. Palsuledesai ◽  
Sean A. Misek ◽  
Maja Blake ◽  
Joseph Zagorski ◽  
...  

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2797-2805 ◽  
Author(s):  
Feng-Ting Liu ◽  
Samir G. Agrawal ◽  
John G. Gribben ◽  
Hongtao Ye ◽  
Ming-Qing Du ◽  
...  

Proapoptotic Bcl-2 family member Bax is a crucial protein in the induction of apoptosis, and its activation is required for this process. Here we report that Bax is a short-lived protein in malignant B cells and Bax protein levels decreased rapidly when protein synthesis was blocked. Malignant B cells were relatively resistant to tumor necrosis factor–related apoptosis inducing ligand (TRAIL)–induced apoptosis, and this correlated with low basal Bax protein levels. Furthermore, during treatment with TRAIL, the resistant cell lines showed prominent Bax degradation activity. This degradation activity was localized to mitochondrial Bax and could be prevented by truncated Bid, a BH3-only protein; in contrast, cytosolic Bax was relatively stable. The proteasome inhibitor bortezomib is a potent drug in inducing apoptosis in vitro in malignant B-cell lines and primary chronic lymphocytic leukemic (CLL) cells. In CLL cells, bortezomib induced Bax accumulation, translocation to mitochondria, conformational change, and oligomerization. Accumulation and stabilization of Bax protein by bortezomib-sensitized malignant B cells to TRAIL-induced apoptosis. This study reveals that Bax instability confers resistance to TRAIL, which can be reversed by Bax stabilization with a proteasome inhibitor.


2008 ◽  
Vol 294 (3) ◽  
pp. E540-E550 ◽  
Author(s):  
Elida Lai ◽  
George Bikopoulos ◽  
Michael B. Wheeler ◽  
Maria Rozakis-Adcock ◽  
Allen Volchuk

Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic β-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic β-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced β-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in β-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.


Sign in / Sign up

Export Citation Format

Share Document