scholarly journals PD-L1 Expression in Systemic Immune Cell Populations as a Potential Predictive Biomarker of Responses to PD-L1/PD-1 Blockade Therapy in Lung Cancer

2019 ◽  
Vol 20 (7) ◽  
pp. 1631 ◽  
Author(s):  
Ana Bocanegra ◽  
Gonzalo Fernandez-Hinojal ◽  
Miren Zuazo-Ibarra ◽  
Hugo Arasanz ◽  
Maria Garcia-Granda ◽  
...  

PD-L1 tumor expression is a widely used biomarker for patient stratification in PD-L1/PD-1 blockade anticancer therapies, particularly for lung cancer. However, the reliability of this marker is still under debate. Moreover, PD-L1 is widely expressed by many immune cell types, and little is known on the relevance of systemic PD-L1+ cells for responses to immune checkpoint blockade. We present two clinical cases of patients with non-small cell lung cancer (NSCLC) and PD-L1-negative tumors treated with atezolizumab that showed either objective responses or progression. These patients showed major differences in the distribution of PD-L1 expression within systemic immune cells. Based on these results, an exploratory study was carried out with 32 cases of NSCLC patients undergoing PD-L1/PD-1 blockade therapies, to compare PD-L1 expression profiles and their relationships with clinical outcomes. Significant differences in the percentage of PD-L1+ CD11b+ myeloid cell populations were found between objective responders and non-responders. Patients with percentages of PD-L1+ CD11b+ cells above 30% before the start of immunotherapy showed response rates of 50%, and 70% when combined with memory CD4 T cell profiling. These findings indicate that quantification of systemic PD-L1+ myeloid cell subsets could provide a simple biomarker for patient stratification, even if biopsies are scored as PD-L1 null.

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 809 ◽  
Author(s):  
Kloten ◽  
Lampignano ◽  
Krahn ◽  
Schlange

Over the last decade, the immune checkpoint blockade targeting the programmed death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis has improved progression-free and overall survival of advanced non-small cell lung cancer (NSCLC) patients. PD-L1 tumor expression, along with tumor mutational burden, is currently being explored as a predictive biomarker for responses to immune checkpoint inhibitors (ICIs). However, lung cancer patients may have insufficient tumor tissue samples and the high bleeding risk often prevents additional biopsies and, as a consequence, immunohistological evaluation of PD-L1 expression. In addition, PD-L1 shows a dynamic expression profile and can be influenced by intratumoral heterogeneity as well as the immune cell infiltrate in the tumor and its microenvironment, influencing the response rate to PD-1/PD-L1 axis ICIs. Therefore, to identify subgroups of patients with advanced NSCLC that will most likely benefit from ICI therapies, molecular characterization of PD-L1 expression in circulating tumor cells (CTCs) might be supportive. In this review, we highlight the use of CTCs as a complementary diagnostic tool for PD-L1 expression analysis in advanced NSCLC patients. In addition, we examine technical issues of PD-L1 measurement in tissue as well as in CTCs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


2021 ◽  
Author(s):  
Shu-Yun Li ◽  
Xiaowei Gu ◽  
Anna Heinrich ◽  
Emily G. Hurley ◽  
Blanche Capel ◽  
...  

AbstractTestis differentiation is initiated when Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. Sertoli cells are essential for testis development, but cell types within the interstitial compartment, such as immune and endothelial cells, are also critical for organ formation. Our previous work implicated macrophages in fetal testis morphogenesis, but little is known about genes underlying immune cell development during organogenesis. Here we examine the role of the immune-associated genes Mafb and Maf in mouse fetal gonad development, and we demonstrate that deletion of these genes leads to aberrant hematopoiesis manifested by supernumerary gonadal monocytes. Mafb;Maf double knockout embryos underwent initial gonadal sex determination normally, but exhibited testicular hypervascularization, testis cord formation defects, Leydig cell deficit, and a reduced number of germ cells. In general, Mafb and Maf alone were dispensable for gonad development; however, when both genes were deleted, we observed significant defects in testicular morphogenesis, indicating that Mafb and Maf work redundantly during testis differentiation. These results demonstrate previously unappreciated roles for Mafb and Maf in immune and vascular development and highlight the importance of interstitial cells in gonadal differentiation.Summary statementDeletion of Mafb and Maf genes leads to supernumerary monocytes in fetal mouse gonads, resulting in vascular, morphogenetic, and differentiation defects during testicular organogenesis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Julien Racle ◽  
Kaat de Jonge ◽  
Petra Baumgaertner ◽  
Daniel E Speiser ◽  
David Gfeller

Immune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type-specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research (http://epic.gfellerlab.org).


2019 ◽  
Vol 51 (11) ◽  
pp. 562-577
Author(s):  
C. Joy Shepard ◽  
Sara G. Cline ◽  
David Hinds ◽  
Seyedehameneh Jahanbakhsh ◽  
Jeremy W. Prokop

Genetics of multiple sclerosis (MS) are highly polygenic with few insights into mechanistic associations with pathology. In this study, we assessed MS genetics through linkage disequilibrium and missense variant interpretation to yield a MS gene network. This network of 96 genes was taken through pathway analysis, tissue expression profiles, single cell expression segregation, expression quantitative trait loci (eQTLs), genome annotations, transcription factor (TF) binding profiles, structural genome looping, and overlap with additional associated genetic traits. This work revealed immune system dysfunction, nerve cell myelination, energetic control, transcriptional regulation, and variants that overlap multiple autoimmune disorders. Tissue-specific expression and eQTLs of MS genes implicate multiple immune cell types including macrophages, neutrophils, and T cells, while the genes in neural cell types enrich for oligodendrocyte and myelin sheath biology. There are eQTLs in linkage with lead MS variants in 25 genes including the multitissue eQTL, rs9271640, for HLA-DRB1/ DRB5. Using multiple functional genomic databases, we identified noncoding variants that disrupt TF binding for GABPA, CTCF, EGR1, YY1, SPI1, CLOCK, ARNTL, BACH1, and GFI1. Overall, this paper suggests multiple genetic mechanisms for MS associated variants while highlighting the importance of a systems biology and network approach when elucidating intersections of the immune and nervous system.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


2007 ◽  
Vol 55 (10) ◽  
pp. 1049-1058 ◽  
Author(s):  
Alison E. Ridyard ◽  
Jeremy K. Brown ◽  
Susan M. Rhind ◽  
Roderick W. Else ◽  
James W. Simpson ◽  
...  

Canine idiopathic lymphocytic-plasmacytic colitis (LPC) is a well-recognized clinical and pathological entity in the dog, associated with altered immune cell populations and cytokine expression profiles. Clinical and experimental data indicate that alterations in the permeability of the intestinal epithelium contribute to the pathogenesis of a range of related conditions. The apical junction complex plays a significant role in regulating epithelial paracellular permeability, and we have characterized the distribution of a number of its component tight junction (ZO-1, occludin, claudin-2) and adherens junction (E-cadherin and β-catenin) proteins in normal colon and colon from dogs with idiopathic LPC. ZO-1, occludin, E-cadherin, and β-catenin exhibited a distribution in normal canine colon similar to that described previously in humans and rodents. In contrast to the situation in humans, claudin-2-specific labeling was observed in the normal canine colonic crypt epithelium, decreasing in intensity from the distal to the proximal crypt and becoming barely detectable at the luminal surface of the colon. There was little evidence for significant changes in ZO-1, occludin, E-cadherin, or β-catenin expression in dogs affected by idiopathic LPC. However, claudin-2 expression markedly increased in the proximal crypt and luminal colonic epithelium in affected dogs, suggesting a role in the pathogenesis of canine LPC. (J Histochem Cytochem 55: 1049–1058, 2007)


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Guo ◽  
Weimin Li ◽  
Xuyu Cai

The recent technical and computational advances in single-cell sequencing technologies have significantly broaden our toolkit to study tumor microenvironment (TME) directly from human specimens. The TME is the complex and dynamic ecosystem composed of multiple cell types, including tumor cells, immune cells, stromal cells, endothelial cells, and other non-cellular components such as the extracellular matrix and secreted signaling molecules. The great success on immune checkpoint blockade therapy has highlighted the importance of TME on anti-tumor immunity and has made it a prime target for further immunotherapy strategies. Applications of single-cell transcriptomics on studying TME has yielded unprecedented resolution of the cellular and molecular complexity of the TME, accelerating our understanding of the heterogeneity, plasticity, and complex cross-interaction between different cell types within the TME. In this review, we discuss the recent advances by single-cell sequencing on understanding the diversity of TME and its functional impact on tumor progression and immunotherapy response driven by single-cell sequencing. We primarily focus on the major immune cell types infiltrated in the human TME, including T cells, dendritic cells, and macrophages. We further discuss the limitations of the existing methodologies and the prospects on future studies utilizing single-cell multi-omics technologies. Since immune cells undergo continuous activation and differentiation within the TME in response to various environmental cues, we highlight the importance of integrating multimodal datasets to enable retrospective lineage tracing and epigenetic profiling of the tumor infiltrating immune cells. These novel technologies enable better characterization of the developmental lineages and differentiation states that are critical for the understanding of the underlying mechanisms driving the functional diversity of immune cells within the TME. We envision that with the continued accumulation of single-cell omics datasets, single-cell sequencing will become an indispensable aspect of the immune-oncology experimental toolkit. It will continue to drive the scientific innovations in precision immunotherapy and will be ultimately adopted by routine clinical practice in the foreseeable future.


Sign in / Sign up

Export Citation Format

Share Document