scholarly journals Green Tea Seed Oil Suppressed Aβ1–42-Induced Behavioral and Cognitive Deficit via the Aβ-Related Akt Pathway

2019 ◽  
Vol 20 (8) ◽  
pp. 1865 ◽  
Author(s):  
Kim ◽  
Park ◽  
Kang ◽  
Park ◽  
Yoo ◽  
...  

The aim of this study was to investigate the availability of seeds, one of the byproducts of green tea, and evaluate the physiological activity of seed oil. The ameliorating effect of green tea seed oil (GTO) was evaluated on H2O2-induced PC12 cells and amyloid beta (Aβ)1–42-induced ICR mice. GTO showed improvement of cell viability and reduced reactive oxygen species (ROS) production in H2O2-induced PC12 cells by conducting the 2′,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2′,7′-dichlorofluorescein diacetate (DCF-DA) analysis. Also, administration of GTO (50 and 100 mg/kg body weight) presented protective effects on behavioral and memory dysfunction by conducting Y-maze, passive avoidance, and Morris water maze tests in Aβ-induced ICR mice. GTO protected the antioxidant system by reducing malondialdehyde (MDA) levels, and by increasing superoxide dismutase (SOD) and reducing glutathione (GSH) contents. It significantly regulated the cholinergic system of acetylcholine (ACh) contents, acetylcholinesterase (AChE) activities, and AChE expression. Also, mitochondrial function was improved through the reduced production of ROS and damage of mitochondrial membrane potential (MMP) by regulating the Aβ-related c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) and Akt/apoptosis pathways. This study suggested that GTO may have an ameliorating effect on cognitive dysfunction and neurotoxicity through various physiological activities.

2018 ◽  
Vol 7 (1) ◽  
pp. 56
Author(s):  
Xinchu Weng ◽  
Zhuoting Yun ◽  
Chenxiao Zhang

Physicochemical properties, fatty acid composition, antioxidant compounds and oxidative stability of oil-tea seed oil (Camellia oleifera Abel.) and green-tea seed oil (Camellia sinensis O. Ktze.) were investigated. The refractive index, saponification value, iodine value, acid value, peroxide value, unsaponifiables were determined to assess the quality of the oils. The major fatty acids of green-tea seed oil and oil-tea seed oil were oleic acid, linoleic acid and palmitic acid. Green-tea seed oil was typical oleic-linoleic-oil with 52.13% oleic acid and 24.32% linoleic acid level, whereas oil-tea seed oil was typical oleic-oil with very high oleic acid level (73.67%). The amount of total phenols, α-tocopherol and β-carotene of green-tea seed oil were 8.68 mg/kg, 160.33 mg/kg, 3.20 mg/kg, respectively, whereas they were 17.90 mg/kg, 85.66 mg/kg, 1.18 mg/kg in oil-tea seed oil, respectively. Green-tea seed oil contained high amounts of α-tocopherol which was nearly twice that of oil-tea seed oil. The initial induction period (IP) values of green-tea seed oil and oil-tea seed oil were 6.55h and 6.08h at 110 oC by OSI method, respectively, which shows the oxidative stability of two kinds of tea seed oils were preferable. Therefore, oil-tea seed oil could be a good dietary supplement with high level of monounsaturated fatty acids and similar fatty acid composition of olive oil. Green-tea seed oil was a new oil resource which is rich in α-tocopherol in China.


2019 ◽  
Vol 33 ◽  
pp. 205873841987262 ◽  
Author(s):  
Shuheng Liu ◽  
Guisheng Yu ◽  
Guohua Song ◽  
Qingguo Zhang

It is of significance to alleviate oxidative damages for the treatment of spinal cord injury (SCI). Studies have ascertained that green tea polyphenols (GTPs) exert protective activities against oxidative damages. In this study, we aimed to investigate the protective effects of GTP against H2O2-caused injuries in PC12 cells as well as the molecular underpinnings associated with long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). PC12 cells were preincubated with GTP prior to H2O2 stimulation. Furthermore, MALAT1-deficient PC12 cells were constructed by transfection and identified by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Next, viability and apoptosis were detected by cell counting kit-8 and flow cytometry, respectively. Meanwhile, Western blot assay was carried out to monitor the expression alteration of proteins associated with apoptosis (Bcl-2, Bax, pro-Caspase-3/9, and cleaved Caspase-3/9) and autophagy (microtubule-associated protein 1 light chain 3 (LC3)-II, LC3-I, Beclin-1, and p62). Moreover, we examined the expression of β-catenin and dissected the phosphorylation of phosphatidylinositol 3′-kinase (PI3K) and protein kinase B (AKT). We found that H2O2 decreased the viability of PC12 cells while initiated apoptosis and autophagy processes. GTP-preincubated PC12 cells maintained the viability and resisted the apoptosis and autophagy induced by H2O2. Pointedly, GTP-pretreated PC12 cells showed an increase in MALAT1 after H2O2 stimulation. Of note, the protective effects of GTP were buffered in MALAT1-deficient cells in response to H2O2. The expression of β-catenin and phosphorylation of PI3K and AKT were upregulated by GTP, while MALAT1 knockdown led to opposite results. To sum up, GTP protected PC12 cells from H2O2-induced damages by the upregulation of MALAT1. This process might be through activating Wnt/β-catenin and PI3K/AKT signal pathways.


2019 ◽  
Vol 14 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
Wei Xu ◽  
Dandan Zhu ◽  
Bin Xu ◽  
Lu Huang ◽  
Yongzhao Xiong ◽  
...  

KSBB Journal ◽  
2013 ◽  
Vol 28 (5) ◽  
pp. 287-294 ◽  
Author(s):  
Myung-Ja Min ◽  
Moon-Hee Choi ◽  
Gwui Cheol Kim ◽  
Hyun-Jae Shin

2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  

2020 ◽  
pp. 66-72
Author(s):  
A. Khisamova ◽  
O. Gizinger

In the modern world, where a person is exposed to daily stress, increased physical exertion, the toxic effect of various substances, including drugs. The task of modern science is to find antioxidants for the body. These can be additives obtained both synthetically and the active substances that we get daily from food. Such a striking example is turmeric, obtained from the plant Curcuma longa. Recently, it has been known that curcumin has an antioxidant, anti-inflammatory, anti-cancer effect and, thanks to these effects, plays an important role in the prevention and treatment of various diseases, in particular, from cancer to autoimmune, neurological, cardiovascular and diabetic diseases. In addition, much attention is paid to increasing the biological activity and physiological effects of curcumin on the body through the synthesis of curcumin analogues. This review discusses the chemical and physical characteristics, analogues, metabolites, the mechanisms of its physiological activity and the effect of curcumin on the body.


Author(s):  
Ok Kyung Kim ◽  
Da-Eun Nam ◽  
Min-Jae Lee ◽  
Namgil Kang ◽  
Jae-Youn Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document