scholarly journals Legumain Promotes Atherosclerotic Vascular Remodeling

2019 ◽  
Vol 20 (9) ◽  
pp. 2195 ◽  
Author(s):  
Nana Ozawa ◽  
Yuki Sato ◽  
Yukari Mori ◽  
Hiroko Masuda ◽  
Mao Yamane ◽  
...  

Legumain, a recently discovered cysteine protease, is increased in both carotid plaques and plasma of patients with carotid atherosclerosis. Legumain increases the migration of human monocytes and human umbilical vein endothelial cells (HUVECs). However, the causal relationship between legumain and atherosclerosis formation is not clear. We assessed the expression of legumain in aortic atheromatous plaques and after wire-injury-induced femoral artery neointimal thickening and investigated the effect of chronic legumain infusion on atherogenesis in Apoe−/− mice. We also investigated the associated cellular and molecular mechanisms in vitro, by assessing the effects of legumain on inflammatory responses in HUVECs and THP-1 monocyte-derived macrophages; macrophage foam cell formation; and migration, proliferation, and extracellular matrix protein expression in human aortic smooth muscle cells (HASMCs). Legumain was expressed at high levels in atheromatous plaques and wire injury-induced neointimal lesions in Apoe−/− mice. Legumain was also expressed abundantly in THP-1 monocytes, THP-1 monocyte-derived macrophages, HASMCs, and HUVECs. Legumain suppressed lipopolysaccharide-induced mRNA expression of vascular cell adhesion molecule-1 (VCAM1), but potentiated the expression of interleukin-6 (IL6) and E-selectin (SELE) in HUVECs. Legumain enhanced the inflammatory M1 phenotype and oxidized low-density lipoprotein-induced foam cell formation in macrophages. Legumain did not alter the proliferation or apoptosis of HASMCs, but it increased their migration. Moreover, legumain increased the expression of collagen-3, fibronectin, and elastin, but not collagen-1, in HASMCs. Chronic infusion of legumain into Apoe−/− mice potentiated the development of atherosclerotic lesions, accompanied by vascular remodeling, an increase in the number of macrophages and ASMCs, and increased collagen-3 expression in plaques. Our study provides the first evidence that legumain contributes to the induction of atherosclerotic vascular remodeling.

2018 ◽  
Vol 132 (11) ◽  
pp. 1199-1213 ◽  
Author(s):  
Cheng Zhang ◽  
Juan-Juan Qin ◽  
Fu-Han Gong ◽  
Jing-Jing Tong ◽  
Wen-Lin Cheng ◽  
...  

Mindin, which is a highly conserved extracellular matrix protein, has been documented to play pivotal roles in regulating angiogenesis, inflammatory processes, and immune responses. The aim of the present study was to assess whether mindin contributes to the development of atherosclerosis. A significant up-regulation of Mindin expression was observed in the serum, arteries and atheromatous plaques of ApoE−/− mice after high-fat diet treatment. Mindin−/−ApoE−/− mice and macrophage-specific mindin overexpression in ApoE−/− mice (Lyz2-mindin-TG) were generated to evaluate the effect of mindin on the development of atherosclerosis. The Mindin−/−ApoE−/− mice exhibited significantly ameliorated atherosclerotic burdens in the entire aorta and aortic root and increased atherosclerotic plaque stability. Moreover, bone marrow transplantation further demonstrated that mindin deficiency in macrophages was largely responsible for the alleviated atherogenesis. The Lyz2-mindin-TG mice exhibited the opposite phenotype. Mindin deficiency enhanced foam cell formation by increasing the expression of cholesterol effectors, including ABCA1 and ABCG1. The mechanistic study indicated that mindin ablation promoted LXR-β expression via a direct interaction. Importantly, LXR-β inhibition largely reversed the ameliorating effect of mindin deficiency on foam cell formation and ABCA1 and ABCG1 expression. The present study demonstrated that mindin deficiency serves as a novel mediator that protects against foam cell formation and atherosclerosis by directly interacting with LXR-β.


2018 ◽  
Vol 132 (14) ◽  
pp. 1509-1512
Author(s):  
Neil MacRitchie ◽  
Pasquale Maffia

The hallmark features of atherosclerosis include accumulation of low-density lipoprotein (LDL) carrying cholesterol in the vessel wall, formation of lipid-laden foam cells, and the creation of a pro-inflammatory microenvironment. To date, no effective treatments are clinically available for increasing cholesterol efflux from vascular macrophages and inducing reverse cholesterol transport (RCT). In an article published recently in Clinical Science (vol 132, issue 6, 1199-1213), Zhang and colleagues identified the extracellular matrix protein mindin/spondin 2 as a positive regulator of atherosclerosis. Genetic knockout of mindin in apolipoprotein-E (apoE)−/− mice attenuated atherosclerosis, foam cell formation, and inflammation within the vessel wall. Conversely, selective overexpression of mindin in macrophages in apoE−/− mice was sufficient to promote the greater severity of atherosclerosis. Interestingly, foam cell formation was closely associated with the expression of cholesterol transporters (ABCA1 and ACBG1) that facilitate cholesterol efflux. Liver X receptor (LXR)-β is a key modulator of cholesterol transporter expression and formed direct interactions with mindin. Furthermore, the protective effects of mindin deficiency on foam cell formation were blocked by inhibition of LXR-β. This article highlights a novel role of mindin in modulating foam cell formation and atherosclerosis development in mice through direct regulation of LXR-β. Thus far, direct targetting of LXR-β via pharmacological agonists has proven to be problematic due to the lack of subtype selective inhibitors and associated adverse effects. Indirect targetting of LXR-β, therefore, via mindin inhibition offers a new therapeutic strategy for increasing LXR-β induced cholesterol efflux, reducing foam cell formation, and preventing or treating atherosclerosis.


2019 ◽  
Vol 133 (16) ◽  
pp. 1779-1796 ◽  
Author(s):  
Kengo Sato ◽  
Hayami Yoshizawa ◽  
Tomomi Seki ◽  
Remina Shirai ◽  
Tomoyuki Yamashita ◽  
...  

Abstract Plasma levels of chemerin, an adipocytokine produced from the adipose tissues and liver, are associated with metabolic syndrome and coronary artery disease (CAD). Chemerin and its analog, chemerin-9, are known to bind to their receptor, ChemR23. However, whether chemerin and chemerin-9 affect atherogenesis remains to be elucidated. We investigated the expression of chemerin and ChemR23 in human coronary arteries and cultured human vascular cells. The effects of chemerin and chemerin-9 on atheroprone phenomena were assessed in human THP1 monocytes, human umbilical vein endothelial cells (HUVECs), and human aortic smooth muscle cells (HASMCs) and aortic lesions in Apoe−/− mice. In patients with CAD, a small amount of ChemR23, but not chemerin, was expressed within atheromatous plaques in coronary arteries. Chemerin and ChemR23 were expressed at high levels in THP1 monocytes, THP1-derived macrophages, and HUVECs; however, their expression in HASMCs was weak. Chemerin and chemerin-9 significantly suppressed the tumor necrosis factor-α (TNF-α)-induced mRNA expression of adhesion and pro-inflammatory molecules in HUVECs. Chemerin and chemerin-9 significantly attenuated the TNF-α-induced adhesion of THP1 monocytes to HUVECs and macrophage inflammatory phenotype. Chemerin and chemerin-9 suppressed oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation associated with down-regulation of CD36 and up-regulation of ATP-binding cassette transporter A1 (ABCA1). In HASMCs, chemerin and chemerin-9 significantly suppressed migration and proliferation without inducing apoptosis. In the Apoe−/− mice, a 4-week infusion of chemerin-9 significantly decreased the areas of aortic atherosclerotic lesions by reducing intraplaque macrophage and SMC contents. Our results indicate that chemerin-9 prevents atherosclerosis. Therefore, the development of chemerin analogs/ChemR23 agonists may serve as a novel therapeutic target for atherosclerotic diseases.


2018 ◽  
Vol 132 (23) ◽  
pp. 2493-2507 ◽  
Author(s):  
Yuki Sato ◽  
Rena Watanabe ◽  
Nozomi Uchiyama ◽  
Nana Ozawa ◽  
Yui Takahashi ◽  
...  

Vasostatin-1, a chromogranin A (CgA)-derived peptide (76 amino acids), is known to suppress vasoconstriction and angiogenesis. A recent study has shown that vasostatin-1 suppresses the adhesion of human U937 monocytes to human endothelial cells (HECs) via adhesion molecule down-regulation. The present study evaluated the expression of vasostatin-1 in human atherosclerotic lesions and its effects on inflammatory responses in HECs and human THP-1 monocyte-derived macrophages, macrophage foam cell formation, migration and proliferation of human aortic smooth muscle cells (HASMCs) and extracellular matrix (ECM) production by HASMCs, and atherogenesis in apolipoprotein E-deficient (ApoE−/−) mice. Vasostatin-1 was expressed around Monckeberg’s medial calcific sclerosis in human radial arteries. Vasostatin-1 suppressed lipopolysaccharide (LPS)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HECs. Vasostatin-1 suppressed inflammatory M1 phenotype and LPS-induced interleukin-6 (IL-6) secretion via nuclear factor-κB (NF-κB) down-regulation in macrophages. Vasostatin-1 suppressed oxidized low-density lipoprotein (oxLDL)-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) and CD36 down-regulation and ATP-binding cassette transporter A1 (ABCA1) up-regulation in macrophages. In HASMCs, vasostatin-1 suppressed angiotensin II (AngII)-induced migration and collagen-3 and fibronectin expression via decreasing ERK1/2 and p38 phosphorylation, but increased elastin expression and matrix metalloproteinase (MMP)-2 and MMP-9 activities via increasing Akt and JNK phosphorylation. Vasostatin-1 did not affect the proliferation and apoptosis in HASMCs. Four-week infusion of vasostatin-1 suppressed the development of aortic atherosclerotic lesions with reductions in intra-plaque inflammation, macrophage infiltration, and SMC content, and plasma glucose level in ApoE−/− mice. These results indicate the inhibitory effects of vasostatin-1 against atherogenesis. The present study provided the first evidence that vasostatin-1 may serve as a novel therapeutic target for atherosclerosis.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Shuhong Hu ◽  
Li Zhu

Atherosclerosis is a chronic inflammatory disease of the arterial wall elicited by accumulation of LDL and leucocytes in the subendothelium at predilection sites with disturbed laminar flow. Chemokines and their receptors appear to act as critical players in atherosclerosis as they not only direct atherogenic recruitment of leucocytes but also exert cell hemostatic functions by chemokine ligand-receptor axes and their specific or combined contributions. Atypical chemokine (C-C motif) receptor-like 2 (CCRL2) cooperates with its ligand chemerin and leukocyte-expressed chemerin receptor chemokine-like receptor 1 (CMKLR1) to regulate cell trafficking and inflammatory responses,but its role in atherosclerosis is not clear. To investigate whether CCRL2 contributes to the pathomechanism of atherogenesis, we generated CCRL2 -/- mice in hyperlipidemic atherosclerosis-prone ApoE -/- background and found that the atherosclerotic plaque area of the total aorta was significantly reduced compared with CCRL2 +/+ ApoE -/- mice on a high fat diet. The protective effect of CCRL2 deficiency was anatomically isolated primarily to the site of disturbed blood flow (D-flow) in the aortic arch but not in the descending aorta. Endothelial CCRL2 was upregulated in response to D-flow and either CCRL2 or CMKLR1 deletion reduced plaque formation. Further studies showed that CCRL2 co-localized with CMKLR1 and chemerin within the atherosclerotic aorta root. CCRL2 deficiency led to significantly less lipid deposition in aortic root, reduced CMKLR1 + leukocyte rolling on lesional vascular endothelium, diminished macrophage accumulation and foam cell formation, and polarized macrophage to an M2-like phenotype. These results demonstrate that D-flow induction of vascular CCRL2 is required for optimal formation of atherosclerotic plaques via coordinating the accumulation of CMKLR1 + monocytes/macrophages within the vascular wall, and thus identifies CCRL2 as a novel drug target to prevent or treat atherosclerosis. This work was supported by Natural Science Foundation of China (grant 81370373 to L.Z. and 31300781 to C.T.) Key Words: atherosclerosis, CCRL2, chemerin, macrophage


2016 ◽  
Vol 16 (05) ◽  
pp. 1650068
Author(s):  
SAFOORA KARIMI ◽  
MITRA DADVAR ◽  
BAHRAM DABIR

Atherosclerosis is one of the main causes of death in the developed world. The disease, which is an inflammatory disease, has been the focus of many studies. A few studies attempted to model atherosclerosis lesion development mathematically while no attention has been paid to the multistage nature of the disease. The present study provides a mathematical model for atherosclerosis evolution by focusing on the inflammatory responses of the initial stage of the disease. In the model, the inflammatory response in type I lesion, which includes endothelium dysfunction, LDL oxidation, monocytes entry, foam cell formation and intima property changes, are coupled with the transport equations of blood and LDL in lumen and arterial wall. The innovation of the model is determination of the duration of the initial stage of lesion propagation for a specific patient while the presence of leaky junction in endothelial layer and LDL oxidation in the intima layer are considered. The greatest advantage of the study in comparison with previous studies is to provide a model for the initiating stage of the atherosclerosis development so that a more precise result of the disease evolution is obtained.


2017 ◽  
Vol 12 (10) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
In-Chul Lee ◽  
Jong-Sup Bae

Sulforaphane (SFN) is produced when the enzyme myrosinase transforms glucoraphanin upon damage to the plant such as from chewing and effective in preventing carcinogenesis, diabetes, and inflammatory responses. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. We hypothesized that SFN could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here, we investigated the anti-septic effects and underlying mechanisms of SFN against TGFBIp-mediated septic responses. SFN effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, SFN suppressed cecal ligation and puncture (CLP)-induced sepsis lethality and pulmonary injury. In conclusion, SFN suppressed TGFBIp-mediated and CLP-induced septic responses. Therefore, SFN could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.


2020 ◽  
Vol 21 (21) ◽  
pp. 8312
Author(s):  
Takashi Obama ◽  
Hiroyuki Itabe

Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.


2018 ◽  
Vol 118 (07) ◽  
pp. 1329-1339 ◽  
Author(s):  
Pedro Melgar-Lesmes ◽  
Alvaro Sánchez-Herrero ◽  
Ferran Lozano-Juan ◽  
Jose de la Torre Hernández ◽  
Eulàlia Montell ◽  
...  

AbstractChondroitin sulphate (CS) has long been used to treat osteoarthritis. Some investigations have also shown that the treatment with CS could reduce coronary events in patients with heart disease but no studies have identified the mechanistic role of these therapeutic effects. We aimed to investigate how the treatment with CS can interfere with the progress of atherosclerosis. The aortic arch, thoracic aorta and serum were obtained from apolipoprotein E (ApoE) knockout mice fed for 10 weeks with high-fat diet and then treated with CS (300 mg/kg, n = 15) or vehicle (n = 15) for 4 weeks. Atheromatous plaques were highlighted in aortas with Oil Red staining and analysed by microscopy. ApoE knockout mice treated with CS exhibited attenuated atheroma lesion size by 68% as compared with animals receiving vehicle. Serum lipids, glucose and C-reactive protein were not affected by treatment with CS. To investigate whether CS locally affects the inflamed endothelium or the formation of foam cells in plaques, human endothelial cells and monocytes were stimulated with tumour necrosis factor α or phorbol myristate acetate in the presence or absence of CS. CS reduced the expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and ephrin-B2 and improved the migration of inflamed endothelial cells. CS inhibited foam cell formation in vivo and concomitantly CD36 and CD146 expression and oxidized low-density lipoprotein uptake and accumulation in cultured activated human monocytes and macrophages. Reported cardioprotective effects of CS may arise from modulation of pro-inflammatory activation of endothelium and monocytes and foam cell formation.


Sign in / Sign up

Export Citation Format

Share Document