scholarly journals Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis

2019 ◽  
Vol 20 (11) ◽  
pp. 2840 ◽  
Author(s):  
Marta Zarà ◽  
Gianni Francesco Guidetti ◽  
Marina Camera ◽  
Ilaria Canobbio ◽  
Patrizia Amadio ◽  
...  

Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.

Author(s):  
Sooganna . ◽  
S.K. Jain ◽  
Amrit Lamichaney ◽  
Supradip Saha ◽  
Anjali Anand ◽  
...  

Background: Soybean, an important oilseed crop of India, is rich in protein, oil, vitamins, isoflavones and minerals. Being an oilseed crop and the inherent physiological and biochemical properties, soybean seeds looses itsviability andvigour rapidly during storage, resultinginto poor stand establishment and productivity, upon subsequent planting. The current study aimed to understand the mechanism of antioxidants and antioxidant enzymes in soybean seed longevity.Methods: Ten good storer and ten poor storer, identified after storing for 8 months in ambient laboratory condition, were phenotyped biochemically to understand the mechanism of antioxidants [tocopherols (4 isomers) and isoflavones (12 isomers)] and antioxidant enzymes [catalase (CAT), peroxidise (POX), superoxidedismutase (SOD) and glutathione reductase (GR)]in seed longevity. Result: Good and poor storer genotypes recorded a mean initial germination of 99 and 96%, decreased to 91 and 67%, respectively upon eight months of laboratory ambient storage. Significant differences were observed in the activities of SOD, CAT, GR, alpha (α-T) and delta (δ-T) tocopherol between good and poor storer genotypes. Isomers of tocopherols ie. α-T and δ-T were found to beeither negatively (r= -0.55) or positively (r= 0.60) associated with seed longevity, indicated the role of individual tocopherol isomer than those to total tocopherols in seed longevity.


2021 ◽  
Vol 11 (6) ◽  
pp. 20-29
Author(s):  
Fetoon M ◽  
helaiwi Alk ◽  
Ismet Ara ◽  
Nadine Moubayed

Streptomyces are the most popular among the Actinomycetes groups and found in soils worldwide. They form an important part of the soil ecology within the Actinomycetales order. Streptomyces are diverse as secondary antibiotic metabolites such as Novobiocin, Amphotericin, Vancomycin, Neomycin, Gentamicin, Chloramphenicol, Tetracycline, Erythromycin and Nystatin. Thus, the current study was aimed to isolate, identify and assess the active antibiotic metabolites produced by different actinomyces sp. found in Saudi Arabian soils. Six samples were collected from desert soils of the Al Thumamah area and analyzed using GS-MS. Scanning Electron Microscopy was used to identify the bacterial strains along with their antibiotic metabolites effectiveness of secondary metabolites (antibiotics) against different Gram-positive (Bacillus subtilis, Staphylococcus aureus), negative pathogens (Pseudomonas aeruginosa, Escherichia coli, Salmonella suis, and Shigella sonnei) as well as the fungal strain Candida albicans was investigated. Thirty active bacterial (F1-30) strains were isolated from the soil samples and the strains F3, F7, F22, F30 have white, gray, pink, yellow and red colours respectively. Only ten strains (F13, F14, F15, F16, FI7, F18, F19, F20, F21, and F22) were found to have antimicrobial activity against at least one pathogen. The optimum growth environment was pH 4-10, temperature (300C), and NaCl (7% w/v) concentration. According to our findings, the extreme desert environment of Al Thumamah from Saudi Arabia is rich in its actinobacterial population with diverse colouring groups and various physiological and biochemical properties. This shows it’s capability of generating secondary metabolite elements that could inhibit pathogenic microorganisms.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2316
Author(s):  
Lucia Catani ◽  
Michele Cavo ◽  
Francesca Palandri

Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in “education” and “crafting” of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.


Author(s):  
Florian Puhm ◽  
Eric Boilard ◽  
Kellie R. Machlus

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


2019 ◽  
Vol 317 (5) ◽  
pp. G739-G749 ◽  
Author(s):  
Harmeet Malhi

Extracellular vesicles (EVs) are membrane-defined nanoparticles released by most cell types. The EVs released by cells may differ quantitatively and qualitatively from physiological states to disease states. There are several unique properties of EVs, including their proteins, lipids and nucleic acid cargoes, stability in circulation, and presence in biofluids, which make them a critical vector for cell-to-cell communication and impart utility as a biomarker. EVs may also serve as a vehicle for selective cargo secretion. Similarly, EV cargo may be selectively manipulated for targeted therapeutic delivery. In this review an overview is provided on the EV classification, biogenesis, and secretion pathways, which are conserved across cell types. Next, cargo characterization and effector cell responses are discussed in the context of nonalcoholic steatohepatitis, alcoholic hepatitis, and acetaminophen-induced liver injury. The review also discusses the potential biomarker and therapeutic uses of circulating EVs.


2004 ◽  
Vol 70 (3) ◽  
pp. 1307-1314 ◽  
Author(s):  
Joseph R. Graber ◽  
John A. Breznak

ABSTRACT Treponema primitia strains ZAS-1 and ZAS-2, the first spirochetes to be isolated from termite hindguts (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999), were examined for nutritional, physiological, and biochemical properties relevant to growth and survival in their natural habitat. In addition to using H2 plus CO2 as substrates, these strains were capable of homoacetogenic growth on mono- and disaccharides and (in the case of ZAS-2) methoxylated benzenoids. Cells were also capable of mixotrophic growth (i.e., simultaneous utilization of H2 and organic substrates). Cell extracts of T. primitia possessed enzyme activities of the Wood/Ljungdahl (acetyl coenzyme A) pathway of acetogenesis, including tetrahydrofolate-dependent enzymes of the methyl group-forming branch. However, a folate compound was required in the medium for growth. ZAS-1 and ZAS-2 growing on H2 plus CO2 displayed H2 thresholds of 650 and 490 ppmv, respectively. Anoxic cultures of ZAS-1 and ZAS-2 maintained growth after the addition of as much as 0.5% (vol/vol) O2 to the headspace atmosphere. Cell extracts exhibited NADH and NADPH peroxidase and NADH oxidase activities but neither catalase nor superoxide dismutase activity. Results indicate that (i) T. primitia is able to exploit a variety of substrates derived from the food of its termite hosts and in so doing contributes to termite nutrition via acetogenesis, (ii) in situ growth of T. primitia is likely dependent on secretion of a folate compound(s) by other members of the gut microbiota, and (iii) cells possess enzymatic adaptations to oxidative stress, which is likely to be encountered in peripheral regions of the termite hindgut.


Sign in / Sign up

Export Citation Format

Share Document