scholarly journals Epigenetic Mechanisms in Hirschsprung Disease

2019 ◽  
Vol 20 (13) ◽  
pp. 3123 ◽  
Author(s):  
Ana Torroglosa ◽  
Leticia Villalba-Benito ◽  
Berta Luzón-Toro ◽  
Raquel María Fernández ◽  
Guillermo Antiñolo ◽  
...  

Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.

1993 ◽  
Vol 4 (6) ◽  
pp. 204-209 ◽  
Author(s):  
Wolfgang Schmid ◽  
Doris Nitsch ◽  
Michael Boshart ◽  
Günther Schütz

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150114 ◽  
Author(s):  
Nancy G. Forger

Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.


2005 ◽  
Vol 13 (3) ◽  
pp. 212-217 ◽  
Author(s):  
Maria Cristina Leme Godoy dos Santos ◽  
Sergio Roberto Peres Line

A melogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and protein content. Enamel formation requires the expression of multiple genes that transcribes matrix proteins and proteinases needed to control the complex process of crystal growth and mineralization. The AI phenotypes depend on the specific gene involved, the location and type of mutation, and the corresponding putative change at the protein level. Different inheritance patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported. Mutations in the amelogenin, enamelin, and kallikrein-4 genes have been demonstrated to result in different types of AI and a number of other genes critical to enamel formation have been identified and proposed as candidates for AI. The aim of this article was to present an evaluation of the literature regarding role of proteins and proteinases important to enamel formation and mutation associated with AI.


2018 ◽  
Vol 49 (2) ◽  
pp. 91
Author(s):  
N. G. KOSTOMITSOPOULOS (Ν.Γ. ΚΩΣΤΟΜΗΤΣΟΠΟΥΛΟΣ)

The oestrogen receptor is a ligand-activated transcription factor that modulates specific gene expression by binding to short DNA sequences. The study of the role of oestrogen receptor on the expression of the mitogenic actionof oestrogens and oncogenesis lead biomedical research in new approaches of the treatment of oestrogen-dependent tumors by using antioestrogens. Main mechanism of action of antioestrogens is the prevention of oestrogen action by blocking the binding of oestradiol to the oestrogen receptor. Tamoxifen, the most wellknown antioestrogen, is widely used as adjuvant therapy in all stages of human breast cancer. Recently interest is focused on the potential use of "pure" antioestrogens. The use of antioestrogens in veterinary oncology is also under discussion.


2019 ◽  
Vol 60 (8) ◽  
pp. 1790-1803 ◽  
Author(s):  
Dongyang Zheng ◽  
Lei Wang ◽  
Lifen Chen ◽  
Xiucai Pan ◽  
Kande Lin ◽  
...  

Abstract The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment. Our study indicated that among six of individual mark examined (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac and H3K36me3), a positive association between salt-related changes in histone marks and the expression of differentially expressed genes (DEGs) was observed only for H3K9ac and H4K12ac in seedlings and H3K36me3 in roots. In contrast, chromatin states (CSs) with combinations of six histone modification marks played crucial roles in the differential expression of salt-responsive genes between seedlings and roots. Most importantly, CS7 containing the bivalent marks H3K4me3 and H3K27me3, with a mutual exclusion of functions with each other, displayed distinct functions in the expression of DEGs in both tissues. Specifically, H3K27me3 in CS7 mainly suppressed the expression of DEGs in roots, while H3K4me3 affected the expression of down- and up-regulated genes, possibly by antagonizing the repressive role of H3K27me3 in seedlings. Our findings indicate distinct impacts of the CSs on the differential expression of salt-responsive genes between seedlings and roots in rice, which provides an important background for understanding chromatin-based epigenetic mechanisms that might confer salt tolerance in plants.


Blood ◽  
2019 ◽  
Vol 134 (24) ◽  
pp. 2195-2208 ◽  
Author(s):  
Daniel Sasca ◽  
Haiyang Yun ◽  
George Giotopoulos ◽  
Jakub Szybinski ◽  
Theo Evan ◽  
...  

Cohesin mutations are common in myeloid malignancy. Sasca et al elucidate the potential role of cohesin loss in myelodysplastic syndrome and acute myeloid leukemia (MDS/AML). They demonstrate that cohesin binding is critical for erythroid-specific gene expression and that reduction in cohesin impairs terminal erythroid maturation and promotes myeloid malignancy.


Author(s):  
Harikrishna Nakshatri ◽  
Sunil Badve

Breast cancer is a heterogeneous disease and classification is important for clinical management. At least five subtypes can be identified based on unique gene expression patterns; this subtype classification is distinct from the histopathological classification. The transcription factor network(s) required for the specific gene expression signature in each of these subtypes is currently being elucidated. The transcription factor network composed of the oestrogen (estrogen) receptor α (ERα), FOXA1 and GATA3 may control the gene expression pattern in luminal subtype A breast cancers. Breast cancers that are dependent on this network correspond to well-differentiated and hormone-therapy-responsive tumours with good prognosis. In this review, we discuss the interplay between these transcription factors with a particular emphasis on FOXA1 structure and function, and its ability to control ERα function. Additionally, we discuss modulators of FOXA1 function, ERα–FOXA1–GATA3 downstream targets, and potential therapeutic agents that may increase differentiation through FOXA1.


Sign in / Sign up

Export Citation Format

Share Document