scholarly journals Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK–MuRF-1 Pathway in Rats

2019 ◽  
Vol 20 (19) ◽  
pp. 4955 ◽  
Author(s):  
Yunkyoung Ryu ◽  
Donghyen Lee ◽  
Seung Hyo Jung ◽  
Kyung-Jin Lee ◽  
Hengzhe Jin ◽  
...  

Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3731
Author(s):  
Suji Baek ◽  
Jisu Kim ◽  
Byung Seok Moon ◽  
Sun Mi Park ◽  
Da Eun Jung ◽  
...  

Sarcopenia- or cachexia-related muscle atrophy is due to imbalanced energy metabolism and oxidative stress-induced muscle dysfunction. Monoterpenes play biological and pharmacological reactive oxygen species (ROS) scavenging roles. Hence, we explored the effects of camphene, a bicyclic monoterpene, on skeletal muscle atrophy in vitro and in vivo. We treated L6 myoblast cells with camphene and then examined the ROS-related oxidative stress using Mito TrackerTM Red FM and anti-8-oxoguanine antibody staining. To investigate lipid metabolism, we performed real-time polymerase chain reactions, holotomographic microscopy, and respiratory gas analysis. Rat muscle atrophy in in vivo models was observed using 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography and immunocytochemistry. Camphene reversed the aberrant cell size and muscle morphology of L6 myoblasts under starvation and in in vivo models. Camphene also attenuated E3 ubiquitin ligase muscle RING-finger protein-1, mitochondrial fission, and 8-oxoguanine nuclear expression in starved myotubes and hydrogen peroxide (H2O2)-treated cells. Moreover, camphene significantly regulated lipid metabolism in H2O2-treated cells and in vivo models. These findings suggest that camphene may potentially affect skeletal muscle atrophy by regulating oxidative stress and lipid metabolism.


Author(s):  
Kathryn W. Aguilar-Agon ◽  
Andrew J. Capel ◽  
Jacob W. Fleming ◽  
Darren J. Player ◽  
Neil R. W. Martin ◽  
...  

Abstract Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2274
Author(s):  
Roi Cal ◽  
Heidi Davis ◽  
Alish Kerr ◽  
Audrey Wall ◽  
Brendan Molloy ◽  
...  

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Wang ◽  
Xin-Feng Jiao ◽  
Cheng Wu ◽  
Xiao-Qing Li ◽  
Hui-Xian Sun ◽  
...  

AbstractSkeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.


2013 ◽  
Vol 305 (7) ◽  
pp. E907-E915 ◽  
Author(s):  
Kale S. Bongers ◽  
Daniel K. Fox ◽  
Scott M. Ebert ◽  
Steven D. Kunkel ◽  
Michael C. Dyle ◽  
...  

Skeletal muscle denervation causes muscle atrophy via complex molecular mechanisms that are not well understood. To better understand these mechanisms, we investigated how muscle denervation increases growth arrest and DNA damage-inducible 45α ( Gadd45a) mRNA in skeletal muscle. Previous studies established that muscle denervation strongly induces Gadd45a mRNA, which increases Gadd45a, a small myonuclear protein that is required for denervation-induced muscle fiber atrophy. However, the mechanism by which denervation increases Gadd45a mRNA remained unknown. Here, we demonstrate that histone deacetylase 4 (HDAC4) mediates induction of Gadd45a mRNA in denervated muscle. Using mouse models, we show that HDAC4 is required for induction of Gadd45a mRNA during muscle denervation. Conversely, forced expression of HDAC4 is sufficient to increase skeletal muscle Gadd45a mRNA in the absence of muscle denervation. Moreover, Gadd45a mediates several downstream effects of HDAC4, including induction of myogenin mRNA, induction of mRNAs encoding the embryonic nicotinic acetylcholine receptor, and, most importantly, skeletal muscle fiber atrophy. Because Gadd45a induction is also a key event in fasting-induced muscle atrophy, we tested whether HDAC4 might also contribute to Gadd45a induction during fasting. Interestingly, however, HDAC4 is not required for fasting-induced Gadd45a expression or muscle atrophy. Furthermore, activating transcription factor 4 (ATF4), which contributes to fasting-induced Gadd45a expression, is not required for denervation-induced Gadd45a expression or muscle atrophy. Collectively, these results identify HDAC4 as an important regulator of Gadd45a in denervation-induced muscle atrophy and elucidate Gadd45a as a convergence point for distinct upstream regulators during muscle denervation and fasting.


2021 ◽  
Vol 22 (6) ◽  
pp. 3252
Author(s):  
John M. Lawler ◽  
Jeffrey M. Hord ◽  
Pat Ryan ◽  
Dylan Holly ◽  
Mariana Janini Gomes ◽  
...  

Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.


Author(s):  
Li Wang ◽  
Ming-Qing He ◽  
Xi-Yu Shen ◽  
Kang-Zhen Zhang ◽  
Can Zhao ◽  
...  

Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can also improve skeletal muscle performance both in human and mice. We here showed that dexamethasone induced atrophy, evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression , and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLRP3, Caspase-1 and GSDMD. Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine administration ameliorated dexamethasone-induced muscle atrophy both in vivo and in vitro. Moreover, trimetazidine improved exercise tolerance, as evidenced by increased running distance and running time, as well as increased skeletal muscle mass in dexamethasone-treated mice. Mechanically, trimetazidine could reverse dexamethasone-induced activation of pyroptosis both in C2C12 myotubes and in mice. Taken together, our present study demonstrated that NLRP3/GSDMD pathway-mediated pyroptosis was involved in dexamethasone-induced skeletal muscle atrophy. Trimetazidine could partially alleviate dexamethasone-induced skeletal muscle atrophy, and increase the diameter of C2C12 myotubes via inhibiting pyroptosis. Thus, trimetazidine might be a potential therapeutic compound for the prevention of muscle atrophy in glucocorticoid-treated patients.


2021 ◽  
Author(s):  
Shiqiang Liu ◽  
Pengyu Fu ◽  
Kaiting Ning ◽  
Rui Wang ◽  
Baoqiang Yang ◽  
...  

Abstract Background: Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Methods & Results: Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxia treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase of HIF-1α. Moreover, the decline of area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. and Conclusions: Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.


2011 ◽  
Vol 43 (19) ◽  
pp. 1075-1086 ◽  
Author(s):  
Peter Bialek ◽  
Carl Morris ◽  
Jascha Parkington ◽  
Michael St. Andre ◽  
Jane Owens ◽  
...  

Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions.


Sign in / Sign up

Export Citation Format

Share Document