scholarly journals Effects of Encapsulated Cells on the Physical–Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels

2019 ◽  
Vol 20 (20) ◽  
pp. 5061 ◽  
Author(s):  
Srikumar Krishnamoorthy ◽  
Behnam Noorani ◽  
Changxue Xu

Gelatin methacrylate (GelMA) has been gaining popularity in recent years as a photo-crosslinkable biomaterial widely used in a variety of bioprinting and tissue engineering applications. Several studies have established the effects of process-based and material-based parameters on the physical–mechanical properties and microstructure of GelMA hydrogels. However, the effect of encapsulated cells on the physical–mechanical properties and microstructure of GelMA hydrogels has not been fully understood. In this study, 3T3 fibroblasts were encapsulated at different cell densities within the GelMA hydrogels and incubated over 96 h. The effects of encapsulated cells were investigated in terms of mechanical properties (tensile modulus and strength), physical properties (swelling and degradation), and microstructure (pore size). Cell viability was also evaluated to confirm that most cells were alive during the incubation. It was found that with an increase in cell density, the mechanical properties decreased, while the degradation and the pore size increased.

Author(s):  
Bingbing Li ◽  
Bani Davod Hesar ◽  
Yiwen Zhao ◽  
Li Ding

Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1930 ◽  
Author(s):  
Ming-You Shie ◽  
Jian-Jr Lee ◽  
Chia-Che Ho ◽  
Ssu-Yin Yen ◽  
Hooi Yee Ng ◽  
...  

Gelatin-methacryloyl (GelMa) is a very versatile biomaterial widely used in various biomedical applications. The addition of methacryloyl makes it possible to have hydrogels with varying mechanical properties due to its photocuring characteristics. In addition, gelatin is obtained and derived from natural material; thus, it retains various cell-friendly motifs, such as arginine-glycine-aspartic acid, which then provides implanted cells with a friendly environment for proliferation and differentiation. In this study, we fabricated human dermal fibroblast cell (hDF)-laden photocurable GelMa hydrogels with varying physical properties (5%, 10%, and 15%) and assessed them for cellular responses and behavior, including cell spreading, proliferation, and the degree of extracellular matrix remodeling. Under similar photocuring conditions, lower concentrations of GelMa hydrogels had lower mechanical properties than higher concentrations. Furthermore, other properties, such as swelling and degradation, were compared in this study. In addition, our findings revealed that there were increased remodeling and proliferation markers in the 5% GelMa group, which had lower mechanical properties. However, it was important to note that cellular viabilities were not affected by the stiffness of the hydrogels. With this result in mind, we attempted to fabricate 5–15% GelMa scaffolds (20 × 20 × 3 mm3) to assess their feasibility for use in skin regeneration applications. The results showed that both 10% and 15% GelMa scaffolds could be fabricated easily at room temperature by adjusting several parameters, such as printing speed and extrusion pressure. However, since the sol-gel temperature of 5% GelMa was noted to be lower than its counterparts, 5% GelMa scaffolds had to be printed at low temperatures. In conclusion, GelMa once again was shown to be an ideal biomaterial for various tissue engineering applications due to its versatile mechanical and biological properties. This study showed the feasibility of GelMa in skin tissue engineering and its potential as an alternative for skin transplants.


2019 ◽  
Vol 10 (3) ◽  
pp. 38 ◽  
Author(s):  
Hamasa Faqhiri ◽  
Markus Hannula ◽  
Minna Kellomäki ◽  
Maria Teresa Calejo ◽  
Jonathan Massera

This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Shuo Zhang ◽  
Sanjairaj Vijayavenkataraman ◽  
Geng Liang Chong ◽  
Jerry Ying Hsi Fuh ◽  
Wen Feng Lu

Nerve guidance conduits (NGCs) are tubular tissue engineering scaffolds used for nerve regeneration. The poor mechanical properties and porosity have always compromised their performances for guiding and supporting axonal growth. Therefore, in order to improve the properties of NGCs, the computational design approach was adopted to investigate the effects of different NGC structural features on their various properties, and finally, design an ideal NGC with mechanical properties matching human nerves and high porosity and permeability. Three common NGC designs, namely hollow luminal, multichannel, and microgrooved, were chosen in this study. Simulations were conducted to study the mechanical properties and permeability. The results show that pore size is the most influential structural feature for NGC tensile modulus. Multichannel NGCs have higher mechanical strength but lower permeability compared to other designs. Square pores lead to higher permeability but lower mechanical strength than circular pores. The study finally selected an optimized hollow luminal NGC with a porosity of 71% and a tensile modulus of 8 MPa to achieve multiple design requirements. The use of computational design and optimization was shown to be promising in future NGC design and nerve tissue engineering research.


2004 ◽  
Vol 127 (2) ◽  
pp. 220-228 ◽  
Author(s):  
Jeanie L. Drury ◽  
Tanyarut Boontheekul ◽  
David J. Mooney

Peptide modification of hydrogel-forming materials is being widely explored as a means to regulate the phenotype of cells immobilized within the gels. Alternatively, we hypothesized that the adhesive interactions between cells and peptides coupled to the gel-forming materials would also enhance the overall mechanical properties of the gels. To test this hypothesis, alginate polymers were modified with RGDSP-containing peptides and the resultant polymer was used to encapsulate C2C12 myoblasts. The mechanical properties of these gels were then assessed as a function of both peptide and cell density using compression and tensile tests. Overall, it was found that above a critical peptide and cell density, encapsulated myoblasts were able to provide additional mechanical integrity to hydrogels composed of peptide-modified alginate. This occurred presumably by means of cell-peptide cross-linking of the alginate polymers, in addition to the usual Ca++ cross-linking. These results are potentially applicable to other polymer systems and important for a range of tissue engineering applications.


Author(s):  
James P. Kennedy ◽  
Robert W. Hitchcock

Methods of creating a scaffold for tissue engineering that allow for modification of properties such as pore size, porosity, and anisotropy are essential for tissue engineering applications. For example the pore size and material anisotropy have been shown to affect cardiomyocyte elongation and alignment [1]. Phase-inversion spray polymerization (PISP) is a method for rapidly precipitating polymers onto a surface by depositing the polymer solution simultaneously with a nonsolvent, and may be used to create biocompatible scaffolds of engineered morphological and mechanical properties by varying the solubility of the polymer in the nonsolvent [2]. We report here on the fabrication of scaffolds using different nonsolvents and methods of in-process elongation that allow for control of stiffness, anisotropy ratio, porosity, and in vitro cell culture.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109150-109156 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Catherine Teyssier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
...  

2D graphene oxide (GO) is used to enhance the mechanical properties of gelatin electrospun fibers. The GO does not show any significant influence on cell viability and cell attachment even though the expression of osteoblast gene is affected.


2021 ◽  
Vol 11 (17) ◽  
pp. 7821
Author(s):  
Angeliki Dimaraki ◽  
Pedro J. Díaz-Payno ◽  
Michelle Minneboo ◽  
Mahdiyeh Nouri-Goushki ◽  
Maryam Hosseini ◽  
...  

The treatment of articular cartilage defects remains a significant clinical challenge. This is partially due to current tissue engineering strategies failing to recapitulate native organization. Articular cartilage is a graded tissue with three layers exhibiting different cell densities: the superficial zone having the highest density and the deep zone having the lowest density. However, the introduction of cell gradients for cartilage tissue engineering, which could promote a more biomimetic environment, has not been widely explored. Here, we aimed to bioprint a scaffold with different zonal cell densities to mimic the organization of articular cartilage. The scaffold was bioprinted using an alginate-based bioink containing human articular chondrocytes. The scaffold design included three cell densities, one per zone: 20 × 106 (superficial), 10 × 106 (middle), and 5 × 106 (deep) cells/mL. The scaffold was cultured in a chondrogenic medium for 25 days and analyzed by live/dead assay and histology. The live/dead analysis showed the ability to generate a zonal cell density with high viability. Histological analysis revealed a smooth transition between the zones in terms of cell distribution and a higher sulphated glycosaminoglycan deposition in the highest cell density zone. These findings pave the way toward bioprinting complex zonal cartilage scaffolds as single units, thereby advancing the translation of cartilage tissue engineering into clinical practice.


2021 ◽  
Author(s):  
◽  
William King, III ◽  

The ideal “off the shelf” tissue engineering, small-diameter (< 6 mm inner diameter (ID)) vascular graft hinges on designing a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Previous traditionally electrospun (TES) approaches to create bioresorbable vascular grafts lack the pore sizes required to facilitate transmural capillary ingrowth required for successful in situ neovascular regeneration. Therefore, the ability to create scaffolds with program-specific architectures independent of fiber diameter via the relatively recent sub-technique of near-field electrospinning (NFES) represents a promising solution to create tissue engineering vascular grafts. These programmed large pore sizes are anticipated to promote in situ regeneration and improve the outcomes as well as the quality of life of patients with arterial disease. In this dissertation, we manufactured via NFES as well as characterized biodegradable polydioxanone (PDO) small-diameter vascular grafts. Chapter 1 introduces the need for off-the-shelf, small-diameter vascular grafts to facilitate in situ regeneration, the process and pore size limitations of TES vascular grafts, and the promising use of NFES to develop precisely tailored PDO vascular grafts. Chapter 2 describes the process of NFES and details the current progress in NFES of biomedical polymers as well as the major limitations that exist in the field. Chapters 3, 4, and 5 contain primary research exploring the creation of an NFES vascular graft scaffold and characterizing the mechanical as well as biological response of these scaffolds. Specifically, in Chapter 3 we demonstrate a NFES apparatus designed around a commercial 3D printer to write PDO microfibers. The processing parameters of air gap, polymer concentration, translational velocity, needle gauge, and applied voltage were characterized for their effects on PDO fiber diameter. The processing parameters of polymer concentration and translational fiber deposition velocity were further characterized for their effects on fiber crystallinity and individual fiber uniformity. The precision of fiber stacking via a 3D printer was qualitatively evaluated to inform the creation of 3D scaffolds to guide the alignment of human gingival fibroblasts. It was found that fiber diameters correlate positively with polymer concentration, applied voltage, and needle gauge and inversely correlate with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D scaffolds which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for vascular graft scaffolds. In Chapter 4, we demonstrated a NFES device to semi-stably write PDO microfibers. The polymer spinneret was programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As a consequence of this random switching process, increasing the grid dimensions resulted in both a lower density of fibers in the center of each grid in the scaffold as well as a lower density of “rebar-like” stacked fibers per unit area. These hybrid architecture scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and effective object permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, these programmable scaffolds resulted in tailorability in the characterized mechanical properties ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young’s modulus independent of fiber diameter compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps (NETs) was further attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for small diameter vascular graft scaffolds. In Chapter 5, we created two types of NFES PDO architectures, as small-diameter vascular graft scaffolds. The first architecture type consisted of a 200 x 200 µm and 500 x 500 µm grid geometry with random fiber infill produced from one set of processing parameters, while the second architecture consisted of aligned fibers written in a 45°/45° and 20°/70° offset from the long axis, both on a 4 mm diameter cylindrical mandrel. These vascular graft scaffolds were characterized for their effective object transit pore size, mechanical properties, and platelet-material interactions compared to TES scaffolds and Gore-Tex® vascular grafts. It was found that effective pore size, given by 9.9 and 97 µm microsphere filtration through the scaffold wall for NFES grafts, was significantly more permeable compared to TES grafts and Gore-Tex® vascular grafts. Furthermore, the characterized mechanical properties of ultimate tensile strength, percent elongation, suture retention, burst pressure, and Young’s modulus were all tailorable for NFES grafts, independent of fiber diameter, compared to TES graft characterization. Lastly, platelet adhesion was attenuated on large pore size NFES grafts compared to the TES grafts which approximated the low level of platelet adhesion measured on Gore-Tex® grafts, with all grafts showing minimal platelet activation given by P-selectin surface expression. Together, these results suggest a highly tailorable process for the creation of the next generation of small-diameter vascular grafts. Lastly, Chapter 6 expounds future considerations for continuing research in NFES technology, NFES for general tissue engineering, and NFES for vascular tissue engineering as well as gives final conclusions. Together, the finding of this dissertation indicated that NFES vascular grafts result in seamless, small diameter tubular scaffolds with programmable pore sizes on the magnitude anticipated to facilitate transmural endothelialization as well as programmable mechanical properties that approximate native values. Thus, this work represents the next step in developing bioinstructive designed scaffolds to facilitate in situ vascular regeneration to improve the outcomes as well as the quality of life of patients with arterial vascular disease.


Sign in / Sign up

Export Citation Format

Share Document